本文涉及的基础知识点
LeetCode1898. 可移除字符的最大数目
给你两个字符串 s 和 p ,其中 p 是 s 的一个 子序列 。同时,给你一个元素 互不相同 且下标 从 0 开始 计数的整数数组 removable ,该数组是 s 中下标的一个子集(s 的下标也 从 0 开始 计数)。
请你找出一个整数 k(0 <= k <= removable.length),选出 removable 中的 前 k 个下标,然后从 s 中移除这些下标对应的 k 个字符。整数 k 需满足:在执行完上述步骤后, p 仍然是 s 的一个 子序列 。更正式的解释是,对于每个 0 <= i < k ,先标记出位于 s[removable[i]] 的字符,接着移除所有标记过的字符,然后检查 p 是否仍然是 s 的一个子序列。
返回你可以找出的 最大 k ,满足在移除字符后 p 仍然是 s 的一个子序列。
字符串的一个 子序列 是一个由原字符串生成的新字符串,生成过程中可能会移除原字符串中的一些字符(也可能不移除)但不改变剩余字符之间的相对顺序。
示例 1:
输入:s = “abcacb”, p = “ab”, removable = [3,1,0]
输出:2
解释:在移除下标 3 和 1 对应的字符后,“abcacb” 变成 “accb” 。
“ab” 是 “accb” 的一个子序列。
如果移除下标 3、1 和 0 对应的字符后,“abcacb” 变成 “ccb” ,那么 “ab” 就不再是 s 的一个子序列。
因此,最大的 k 是 2 。
示例 2:
输入:s = “abcbddddd”, p = “abcd”, removable = [3,2,1,4,5,6]
输出:1
解释:在移除下标 3 对应的字符后,“abcbddddd” 变成 “abcddddd” 。
“abcd” 是 “abcddddd” 的一个子序列。
示例 3:
输入:s = “abcab”, p = “abc”, removable = [0,1,2,3,4]
输出:0
解释:如果移除数组 removable 的第一个下标,“abc” 就不再是 s 的一个子序列。
提示:
1 <= p.length <= s.length <= 105
0 <= removable.length < s.length
0 <= removable[i] < s.length
p 是 s 的一个 子字符串
s 和 p 都由小写英文字母组成
removable 中的元素 互不相同
C++二分查找
n = s.length()
m = removable.size()
二分查找类型:选择尾端
Check函数范围:[0,m]
Check函数:
isRevove 记录那些下标已经被删除。
枚举p个字符,看能否则s的非删除下标中按顺序找到对应字符。
Check函数时间复杂度:O(n+m)
总时间复杂度:O(n+m)log(m)
代码
核心代码
template<class INDEX_TYPE>
class CBinarySearch
{
public:
CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex):m_iMin(iMinIndex),m_iMax(iMaxIndex) {}
template<class _Pr>
INDEX_TYPE FindFrist( _Pr pr)
{
auto left = m_iMin - 1;
auto rightInclue = m_iMax;
while (rightInclue - left > 1)
{
const auto mid = left + (rightInclue - left) / 2;
if (pr(mid))
{
rightInclue = mid;
}
else
{
left = mid;
}
}
return rightInclue;
}
template<class _Pr>
INDEX_TYPE FindEnd( _Pr pr)
{
int leftInclude = m_iMin;
int right = m_iMax + 1;
while (right - leftInclude > 1)
{
const auto mid = leftInclude + (right - leftInclude) / 2;
if (pr(mid))
{
leftInclude = mid;
}
else
{
right = mid;
}
}
return leftInclude;
}
protected:
const INDEX_TYPE m_iMin, m_iMax;
};
class Solution {
public:
int maximumRemovals(string s, string p, vector<int>& removable) {
auto Check = [&](int mid) {
vector<bool> isRevove(s.length(), false);
for (int i = 0; i < mid; i++) {
isRevove[removable[i]] = true;
}
int i = 0;
for (const auto& ch : p) {
for (; i < s.length(); i++) {
if (isRevove[i]) { continue; }
if (ch == s[i]) { break; }
}
if (s.length() == i) { return false; }
i++;
}
return true;
};
return CBinarySearch<int>(0, removable.size()).FindEnd(Check);
}
};
单元测试
string s, p;
vector<int> removable;
TEST_METHOD(TestMethod1)
{
s = "aaa", p = "aaa", removable = { 0,1,2 };
auto res = Solution().maximumRemovals(s, p, removable);
AssertEx(0, res);
}
TEST_METHOD(TestMethod11)
{
s = "abcacb", p = "ab", removable = { 3, 1, 0 };
auto res = Solution().maximumRemovals(s, p, removable);
AssertEx(2, res);
}
TEST_METHOD(TestMethod12)
{
s = "abcbddddd", p = "abcd", removable = { 3, 2, 1, 4, 5, 6 };
auto res = Solution().maximumRemovals(s, p, removable);
AssertEx(1, res);
}
TEST_METHOD(TestMethod13)
{
s = "abcab", p = "abc", removable = { 0, 1, 2, 3, 4 };
auto res = Solution().maximumRemovals(s, p, removable);
AssertEx(0, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。