本文涉及知识点
本博文代码打包下载
C++动态规划
【矩阵快速幂】封装类及测试用例及样例
P3758 [TJOI2017] 可乐
P5789题目相同,就是数据量更大
题目描述
加里敦星球的人们特别喜欢喝可乐。因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的 1 1 1 号城市上。这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆。它每一秒都会随机触发一种行为。现在给加里敦星球城市图,在第 0 0 0 秒时可乐机器人在 1 1 1 号城市,问经过了 t t t 秒,可乐机器人的行为方案数是多少?
输入格式
第一行输入两个正整数 N N N, M M M。 N N N 表示城市个数, M M M 表示道路个数。
接下来 M M M 行每行两个整数 u u u, v v v,表示 u u u, v v v 之间有一条道路。保证两座城市之间只有一条路相连,且没有任何一条道路连接两个相同的城市。
最后一行是一个整数 t t t,表示经过的时间。
输出格式
输出可乐机器人的行为方案数,答案可能很大,请输出对 2017 2017 2017 取模后的结果。
输入输出样例 #1
输入 #1
3 2
1 2
2 3
2
输出 #1
8
说明/提示
样例输入输出 1 解释
- 1 1 1 ->爆炸。
- 1 1 1 -> 1 1 1 ->爆炸。
- 1 1 1 -> 2 2 2 ->爆炸。
- 1 1 1 -> 1 1 1 -> 1 1 1。
- 1 1 1 -> 1 1 1 -> 2 2 2。
- 1 1 1 -> 2 2 2 -> 1 1 1。
- 1 1 1 -> 2 2 2 -> 2 2 2。
- 1 1 1 -> 2 2 2 -> 3 3 3。
数据范围与约定
- 对于 20 % 20\% 20% 的数据,保证 t ≤ 1000 t \leq 1000 t≤1000。
- 对于 100 % 100\% 100%的数据,保证 1 < t ≤ 1 0 6 1 < t \leq 10^6 1<t≤106, 1 ≤ N ≤ 30 1 \leq N \leq30 1≤N≤30, 0 < M < 100 0 < M < 100 0<M<100, 1 ≤ u , v ≤ N 1 \leq u, v \leq N 1≤u,v≤N。
P3758 动态规划 矩阵指数幂
我的习惯,起始下标改成从0开始
动态规划的状态表示
dp[t][p] 表示t秒是在城市p的方案数。空间复杂度:O(TN),可以用滚动向量优化空间。
动态规划的填报顺序
枚举前置状态,t = 0 to T-1 p=0 to N-1
动态规划的转移方程
原地不动cur = pre。
枚举p的临界点next dp[next] +=pre[cur]
时间复杂度:O(T(N+M))
动态规划的初始值
pre[0]=1,其它全部0。
动态规划的返回值
dp之和。t秒自爆的方案数= dp[t-1]方案数之和。
本题也可以使用矩阵指数幂加速。
矩阵指数幂
如果直接使用矩阵相乘,时间复杂度:O(TNN),理论超时。如果用矩阵指数幂,则dp[0…t-1]没有,无法相加。解决方法:pre增加一元素记录dp[0…i]之和。
pre[0]=pre[N]=1,其它全部为0。
mat[N][N]=1,其它全部为0。dp[0…i-1]之和。
mat[i][i]+=1,mat[i][N]+=1 原地不动。i
∈
\in
∈[0,N-1]。
next是i的临接点: mat[i][next]+=1 ,mat[i][N]+=1 所有边都需要枚举,双向。
pre.back是返回值。
代码
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
scanf("%d", &n);
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
AuotToFile();
}
void writestr(const char* sz) {
strcpy(m_p, sz);
m_p += strlen(sz);
AuotToFile();
}
inline void write(char ch)
{
*m_p++ = ch;
AuotToFile();
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
m_p = puffer;
}
~COutBuff() {
ToFile();
}
private:
inline void AuotToFile() {
if (m_p - puffer > N - 100) {
ToFile();
}
}
char puffer[N], * m_p;
};
template<int N = 1'000'000>
class CInBuff
{
public:
inline CInBuff() {}
inline CInBuff<N>& operator>>(char& ch) {
FileToBuf();
ch = *S++;
return *this;
}
inline CInBuff<N>& operator>>(int& val) {
FileToBuf();
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
inline CInBuff& operator>>(long long& val) {
FileToBuf();
long long x(0); int f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
template<class T1,class T2>
inline CInBuff& operator>>(pair<T1,T2>& val) {
*this >> val.first >> val.second;
return *this;
}
template<class T1, class T2,class T3>
inline CInBuff& operator>>(tuple<T1, T2,T3>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
return *this;
}
template<class T1, class T2, class T3,class T4>
inline CInBuff& operator>>(tuple<T1, T2, T3,T4>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
return *this;
}
template<class T = int>
inline CInBuff& operator>>(vector<T>& val) {
int n;
*this >> n;
val.resize(n);
for (int i = 0; i < n; i++) {
*this >> val[i];
}
return *this;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
*this >> ret[i];
}
return ret;
}
private:
inline void FileToBuf() {
const int canRead = m_iWritePos - (S - buffer);
if (canRead >= 100) { return; }
if (m_bFinish) { return; }
for(int i = 0 ;i < canRead;i++)
{
buffer[i] = S[i];//memcpy出错
}
m_iWritePos = canRead;
buffer[m_iWritePos] = 0;
S = buffer;
int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
if (readCnt <= 0) { m_bFinish = true; return; }
m_iWritePos += readCnt;
buffer[m_iWritePos] = 0;
S = buffer;
}
int m_iWritePos = 0; bool m_bFinish = false;
char buffer[N + 10], * S = buffer;
};
class CNeiBo
{
public:
static vector<vector<int>> Two(int n, vector<pair<int, int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& [i1, i2] : edges)
{
vNeiBo[i1 - iBase].emplace_back(i2 - iBase);
if (!bDirect)
{
vNeiBo[i2 - iBase].emplace_back(i1 - iBase);
}
}
return vNeiBo;
}
static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<int>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
}
}
return vNeiBo;
}
static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
{
vector<vector<std::pair<int, int>>> vNeiBo(n);
for (const auto& v : edges)
{
vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
if (!bDirect)
{
vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
}
}
return vNeiBo;
}
static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
{
vector<vector<int>> neiBo(neiBoMat.size());
for (int i = 0; i < neiBoMat.size(); i++)
{
for (int j = i + 1; j < neiBoMat.size(); j++)
{
if (neiBoMat[i][j])
{
neiBo[i].emplace_back(j);
neiBo[j].emplace_back(i);
}
}
}
return neiBo;
}
};
class CMatMul
{
public:
CMatMul(long long llMod = 1e9 + 7) :m_llMod(llMod) {}
// 矩阵乘法
vector<vector<long long>> multiply(const vector<vector<long long>>& a, const vector<vector<long long>>& b) {
const int r = a.size(), c = b.front().size(), iK = a.front().size();
assert(iK == b.size());
vector<vector<long long>> ret(r, vector<long long>(c));
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
for (int k = 0; k < iK; k++)
{
ret[i][j] = (ret[i][j] + a[i][k] * b[k][j]) % m_llMod;
}
}
}
return ret;
}
// 矩阵快速幂
vector<vector<long long>> pow(const vector<vector<long long>>& a, vector<vector<long long>> b, long long n) {
vector<vector<long long>> res = a;
for (; n; n /= 2) {
if (n % 2) {
res = multiply(res, b);
}
b = multiply(b, b);
}
return res;
}
vector<vector<long long>> TotalRow(const vector<vector<long long>>& a)
{
vector<vector<long long>> b(a.front().size(), vector<long long>(1, 1));
return multiply(a, b);
}
protected:
const long long m_llMod;
};
class Solution {
public:
int Ans(const int N, vector<pair<int, int>>& edge, const int T) {
auto neiBo = CNeiBo::Two(N, edge, false, 1);
vector<vector<long long>> pre(1, vector<long long>(N + 1));
pre[0][0] = pre[0][N] = 1;
vector<vector<long long>> mat(N + 1, vector<long long>(N + 1));
mat[N][N]++;
for (int i = 0; i < N; i++) {
mat[i][i]++; mat[i][N]++;
for (const auto& next : neiBo[i]) {
mat[i][next]++; mat[i][N]++;
}
}
CMatMul matMul(2017);
auto ans = matMul.pow(pre, mat, T);
return ans[0].back();
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
int N, m,T;
CInBuff ib;
ib >> N >> m;
auto edge = ib.Read<pair<int, int>>(m);
ib >> T;
#ifdef _DEBUG
printf("N=%d,T=%d,", N,T);
Out(edge, "edge=");
//Out(pos, ",pos=");
/*Out(edge, "edge=");
Out(que, "que=");*/
#endif // DEBUG
auto res = Solution().Ans(N,edge,T);
cout << res;
return 0;
}
单元测试
int N;
vector<pair<int, int>> edge;
int T;
TEST_METHOD(TestMethod1)
{
N = 4, edge={}, T = 0;
auto res = Solution().Ans(N,edge,T);
AssertEx(1, res);
}
TEST_METHOD(TestMethod2)
{
N = 4, edge = {}, T = 1;
auto res = Solution().Ans(N, edge, T);
AssertEx(2, res);
}
TEST_METHOD(TestMethod3)
{
N = 3, T = 2, edge = { {1,2},{2,3} };
auto res = Solution().Ans(N, edge, T);
AssertEx(8, res);
}
TEST_METHOD(TestMethod4)
{
N = 3, T = 3, edge = { {1,2},{2,3} };
auto res = Solution().Ans(N, edge, T);
AssertEx(20, res);
}
TEST_METHOD(TestMethod5)
{
N = 3, T = 1000000, edge = { {1,2},{2,3} };
auto res = Solution().Ans(N, edge, T);
AssertEx(1116, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。