在工作中充分的体会到了 单线程、多线程的区别,以及 缓存的强大之处...

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/HeatDeath/article/details/79922465
qryAll

采用 【单线程】 5次请求的平均用时为:73713.0ms
采用 【单线程】 5次请求的总共用时为:368565.0ms

----

使用 ExecutorService, Collections.synchronizedList(), CountDownLatch

采用 【多线程】 5次请求的平均用时为:7615.333333333333ms
采用 【多线程】 5次请求的总共用时为:22846.0ms

----

与 【单线程】 相比 性能提升 89.67%

----

在之前的基础上,使用 FutureTask、Callable、Collections.synchronizedMap、反射(使用反射是为了提高代码的抽象程度)(可能会小幅度降低程序性能)

采用 【高级】【多线程】 20 次请求的平均用时为:6453.4ms
采用 【高级】【多线程】 20 次请求的总共用时为:129068.0ms

与 【单线程】 相比 性能提升 91.25%
与 【多线程】 相比 性能提升 15.26%

----

采用 Redis 20 次请求的平均用时为:18.7ms
采用 Redis 20 次请求的总共用时为:374.0ms

今天工作的时候需要实现一个从 ElasticSearch 中多次查询大量数据的功能。

一开始使用单线程的方式,程序跑了 70 多秒,要不是上厕所回来看到了返回值,还以为是程序哪里 hung 住了…

后来试着用了一点多线程(线程池、CountDownLatch。、同步容器啥的),性能就提升了 90% 左右


然后又试着把 查询结果 缓存到 Redis 中,查询时间短的可怕

难怪大家都吵着用 缓存呢…


阅读更多
换一批

没有更多推荐了,返回首页