拉格朗日乘子法

先引入百度百科的定义。

在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数极值的方法。这种方法将一个有n 个变量与k 个约束条件最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。

示例:

设给定二元函数z=ƒ(x,y)和约束条件φ(x,y)=0,为寻找z=ƒ(x,y)在约束条件下的极值点,先做拉格朗日函数,其中其中λ为参数

令F(x,y,λ)对x和y和λ的一阶偏导数等于零,即

由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在约束条件φ(x,y)=0下的可能极值点。若这样的点只有一个,由实际问题可直接确定此即所求的点。

接下来讲一下为什么F(x,y,λ)一阶导数等于0的解(x,y)就是ƒ(x,y)在约束φ(x,y)=0下的可能极值点

参考这样一个示例

                                        

先看一下原问题:求z=ƒ(x,y)在约束条件φ(x,y)=0下的极值点,我们假设f(x,y)就是一座山的高度,ƒ(x,y)=C为山的等高线族,曲线L为约束条件,可以发现,当在约束条件的范围中找ƒ(x,y)的极值点时,可能的极值点必定为ƒ(x,y)与φ(x,y)相切的点,即M1,M2,M3,其他非相切的点一定不是极值点。

因为两曲线在切点处必有公法线,所以目标函数等值线在点处法向量与约束条件在点处法向量平行,即

也就是说,存在实数,使下式成立

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值