在学术写作中,最有效的方法就是从前人优秀作品中汲取精华进行仿写。适当的模仿有助于理解相关研究方向,并可以借鉴一些可取的论证方法。但需要注意的是,即使是在顶尖期刊发表的论文也不是完美无缺的,因此模仿并非复制。关键在于吸收他人论文的优点,同时深入了解其不足之处,并将这些不足作为自己学术论文的核心思路。
仿写并非简单地复制或稍作修改他人的工作,而是在深刻理解原有研究的基础上,用全新的视角和语言进行创作。这意味着用自己的语言和观点重新表达相同的概念、理论和发现,而不是简单地模仿。
本文将详细介绍如何利用ChatGPT仿写一篇结构严谨、内容丰富、观点独到的优质学术论文。
一、选择合适的范文
仿写论文的起点在于选择一篇或多篇合适的范文。我们要选择在学术界具有一定影响力的论文,它们通常具备明确的主题、清晰的研究问题和合理的方法论。ChatGPT可以帮助我们通过关键词搜索和文献推荐,快速定位到这些高质量的论文。
提示词指令:请为我推荐几篇关于【主题】的优质论文范文,要求论文在结构和内容上具有典型性,并且能够很好地展示该领域的研究现状。
二、理解论文的深层逻辑
优质论文的核心在于它的深层逻辑思路。通过ChatGPT的辅助,我们可以深入分析范文的方法逻辑、框架逻辑、段落逻辑和句子逻辑。例如,ChatGPT可以帮助我们识别范文中使用的理论框架,理解作者如何将理论应用于研究,并指出理论的适用性和局限性。ChatGPT还能够分析范文的结构布局,帮助我们理解不同部分之间的逻辑联系。
提示词指令:请帮助我分析以下这篇论文的深层逻辑,指出其研究问题、假设、方法、结果和结论,并解释它们之间的关系。【粘贴论文内容或上传论文文件】
三、学习论文的结构布局
论文的结构布局是其清晰表达的关键。我们可以利用ChatGPT来拆解范文的结构,包括摘要、引言、方法、结果、讨论和结论。ChatGPT不仅能够帮助我们理解每个部分的作用,还能够提供不同部分之间的逻辑联系,使我们在仿写时能够更加得心应手。
提示词指令:请为我详细解析一篇关于【主题】的论文的结构布局,包括标题、摘要、引言、文献综述、方法、结果、讨论和结论部分的写作规范和主要内容。
四、掌握形式规范
形式规范是确保论文质量的基础。我们要关注论文各部分的规范写作方法。ChatGPT可以提供各种写作规范的示例,指导我们如何撰写简洁明了的摘要、全面深入的文献综述、详细准确的研究方法描述、清晰客观的结果呈现以及富有洞见的讨论。
提示词指令:请为我总结以下这篇学术论文在格式上的主要要求和规范,比如引用格式、字体、行距、页边距等,并提供相应的例子。【粘贴论文内容或上传论文文件】
五、强化观点论证
论文的核心在于观点的论证。通过ChatGPT的分析,我们可以学习范文中的论证逻辑,包括论点的构建、论据的充分性和学理性的结合。ChatGPT可以帮助我们识别范文中的论证结构,提供如何加强论点的建议,使我们的论文论证更加有力。
提示词指令:请告诉我如何在论文写作中有效地论证观点,特别是在【具体领域或主题】方面,请结合以下论文进行分析,提供一些具体的策略和例子。【粘贴论文内容或上传论文文件】
六、创新与个性化
仿写只是学习的手段,创新才是学术研究的灵魂所在。ChatGPT可以提供新的视角和思考方式,帮助我们在仿写的基础上加入自己的见解和创新点。我们可以利用ChatGPT生成的新想法,结合自己的研究背景和兴趣,创作出具有个性化的论文。
提示词指令:在写作论文时,如何做到创新与个性化?请提供一些在【主题】领域实现创新和展示个人观点的技巧和方法。
七、总结前人资料用ChatGPT进行仿写实践
最后一步就是关键的实践仿写了,我们可以利用ChatGPT进行初稿学术写作。ChatGPT可以根据我们提供的主题和结构,生成论文的草稿,我们再根据需要进行修改和完善。在这个过程中,ChatGPT不仅是一个写作助手,更是一个思维激发者,辅助在写作中不断探索和创新。
以下是将前六步的内容整合到仿写实践中的详细提示词指令:
1、生成写作大纲
提示词指令:请基于以下信息,为一篇关于[主题]的论文生成一份详细的写作大纲。包括引言、文献综述、研究方法、结果、讨论和结论部分的主要内容。【将前六步中获取的关键主题信息汇总】
2、撰写引言部分
提示词指令:根据以下大纲和参考文献,帮我撰写一篇关于[主题]论文的引言部分,确保包括研究背景、问题陈述、研究目的和意义。【大纲和参考文献】
3、撰写文献综述部分
提示词指令:请根据以下内容,帮我撰写一篇关于【主题】的文献综述部分,涵盖现有研究的主要观点和发现,并指出研究的空白。【文献综述结构和参考文献】
4、撰写研究方法部分
提示词指令:请帮我详细描述这篇关于【主题】论文的研究方法部分,包括研究设计、数据收集、分析方法等。【研究方法大纲和细节】
5、撰写结果部分
提示词指令:请根据以下数据和分析结果,帮我撰写一篇关于【主题】论文的结果部分,确保清晰呈现主要发现和数据。【数据和分析结果】
6、撰写讨论部分
提示词指令:请帮我撰写这篇关于[主题]论文的讨论部分,包括对结果的解释、与现有研究的比较、研究的局限性和未来研究方向。【结果和讨论大纲】
7、撰写结论部分
提示词指令:请根据以下信息,帮我撰写这篇关于【主题】论文的结论部分,总结研究发现、理论贡献和实际意义。【总结信息】
8、整合和校对
提示词指令:请帮我将以上各部分整合成一篇完整的论文,并进行校对,确保语言流畅、逻辑清晰、格式规范。【整合后的初稿】
通过以上八个步骤的详细提示词指令,能够帮助你系统地利用ChatGPT进行论文仿写实践,从选择范文到最终完成一篇优质的学术论文。
借助ChatGPT仿写论文是一种高效的学习方法,它不但能帮助我们快速掌握论文写作的技巧,还能激发我们对潜在方向的创新思维。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
AI时代的职场新潮流
听说AI要来抢工作了?别担心,新岗位可比旧岗位有趣多了!想象一下,你从搬砖工升级成了机器人操作员,从算盘小能手变成了大数据分析师,这不是美滋滋吗?所以,社会生产效率提升了,我们也能更轻松地工作。不过,想成为AI界的佼佼者?那就得赶紧学起来,不然就会被同行们甩得连AI的尾巴都摸不着了!
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。