机器学习
文章平均质量分 75
heavenmark
初入移动端测试领域,在此记录自己的学习和成长
展开
-
浅谈机器学习——感知机
一、简介 感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误差分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。原创 2017-07-13 22:00:45 · 538 阅读 · 0 评论 -
浅谈机器学习—朴素贝叶斯法
一、简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。朴素贝叶斯法实现简单,学习与预测的效率都很高,是一种常用的方法。原创 2017-07-15 15:53:06 · 397 阅读 · 0 评论 -
用python实现简单感知机算法
之前有写过一篇关于感知机的理论篇,这算是实践篇,具体代码供参考:原创 2017-07-25 14:03:55 · 839 阅读 · 0 评论