POJ 2774 后缀数组

题目要求:求s1,s2的最大子串

思路:将s1,s2合并为一个字符串s, 也就是求s的max(lcp[i][j]), 唯一i,j分别位于s1和s2, 利用后缀数组计算s的h[]或者height[]数组,那么答案即为h中的最大值。

证明如下:s1,s2一定存在最大子串t,t为s1的子串t1和s2的子串t2的lcp[t1][t2], 假设t1,t2在后缀数组中不相邻,则任意取后缀数组中位于t1,t2之间的串tt, 则lcp[tt][t1]与lcp[tt][t2]中至少有一个同时满足

    (1) >=lcp[t1][t2] :这是由后缀数组的性质所决定的

    (2) 两串分别位于s1,s2:这是因为t1,t2分别属于s1,s2

从而得到更优的解,所以答案一定为h中的最大值

  1. #include <iostream>
  2. #include <string>
  3. #include <algorithm>
  4. using namespace std;
  5. #define Min(a,b) (a)<(b)?(a):(b)
  6. const int N = 201000;
  7. int n, m;
  8. char s[N], s2[N];
  9. int cnt[N], mem[4][N], *rank, *nrank, *sa, *nsa, h[N];
  10. // lcp[i][j]: longest commen prefix ( suffix(sa[k+1]), suffix(sa[k]) ) j <= k < j+2^i
  11. void radix_sort()
  12. {
  13.     int i, j, k;
  14.     rank = mem[0];
  15.     nrank = mem[1];
  16.     sa = mem[2];
  17.     nsa = mem[3];
  18.     for(i = 0; i < n; i++) cnt[s[i]]++;
  19.     for(i = 1; i < 256; i++) cnt[i] += cnt[i-1];
  20.     for(i = n-1; i >= 0; i--) sa[--cnt[s[i]]] = i;
  21.     for(rank[0]=0, i=1; i < n; i++)
  22.     {
  23.         rank[sa[i]] = rank[sa[i-1]];
  24.         if(s[sa[i]]!=s[sa[i-1]]) rank[sa[i]]++;
  25.     }
  26.     for(k = 1; k<n && rank[sa[n-1]] < n-1; k*=2)
  27.     {
  28.         for(i = 0; i < n; i++) cnt[rank[sa[i]]] = i+1;
  29.         for(i = n-1; i >= 0; i--) if(sa[i]-k>=0)
  30.             nsa[--cnt[rank[sa[i]-k]]] = sa[i]-k;
  31.         // max(sa[i]-k)=n-k-1 , therefore i = n-k;
  32.         for(i = n-k; i < n; i++)
  33.             nsa[--cnt[rank[i]]] = i;
  34.         for(nrank[nsa[0]], i=1; i < n; i++)
  35.         {
  36.             nrank[nsa[i]] = nrank[nsa[i-1]];
  37.             if(rank[nsa[i]] != rank[nsa[i-1]]
  38.                 || rank[nsa[i]+k] != rank[nsa[i-1]+k])
  39.             nrank[nsa[i]]++;
  40.         }
  41.         swap(rank, nrank);
  42.         swap(sa, nsa);
  43.     }
  44. }
  45. void get_lcp_rmq()
  46. {
  47.     int i, j, k;
  48.     for(i=0,k=0; i<n; i++)
  49.     {
  50.         if(rank[i]==n-1) h[rank[i]]=k=0;
  51.         else
  52.         {
  53.             if(k>0)k--;
  54.             j = sa[rank[i]+1];
  55.             for(;s[i+k]==s[j+k];k++) ;
  56.             h[rank[i]]=k;
  57.         }
  58.     }
  59. }
  60. int main()
  61. {
  62.     int i, j, k;
  63.     int p1, p2, n1;
  64.     gets(s);
  65.     n1 = strlen(s);
  66.     s[n1++]='#';
  67.     gets(s2);
  68.     strcat(s,s2);
  69.     n = strlen(s);
  70.     s[n++]=0;
  71.     radix_sort();
  72.     get_lcp_rmq();
  73.     int ans = 0;
  74.     for(i = 0; i < n-1; i++)
  75.     {
  76.         j = sa[i];
  77.         if(j < n1)p1 = 1;
  78.         else p1 = -1;
  79.         k = sa[i+1];
  80.         if(k < n1)p2 = 1;
  81.         else p2 = -1;
  82.         if(p1*p2<1 && h[i]>ans)
  83.             ans = h[i];
  84.     }
  85.     printf("%d/n", ans);
  86.     return 0;
  87. }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值