郁闷的出纳员
【问题描述】
OIER公司是一家大型专业化软件公司,有着数以万计的员工。作为一名出纳员,我的任务之一便是统计每位员工的工资。这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资。如果他心情好,就可能把每位员工的工资加上一个相同的量。反之,如果心情不好,就可能把他们的工资扣除一个相同的量。我真不知道除了调工资他还做什么其它事情。
工资的频繁调整很让员工反感,尤其是集体扣除工资的时候,一旦某位员工发现自己的工资已经低于了合同规定的工资下界,他就会立刻气愤地离开公司,并且再也不会回来了。每位员工的工资下界都是统一规定的。每当一个人离开公司,我就要从电脑中把他的工资档案删去,同样,每当公司招聘了一位新员工,我就得为他新建一个工资档案。
老板经常到我这边来询问工资情况,他并不问具体某位员工的工资情况,而是问现在工资第k多的员工拿多少工资。每当这时,我就不得不对数万个员工进行一次漫长的排序,然后告诉他答案。
好了,现在你已经对我的工作了解不少了。正如你猜的那样,我想请你编一个工资统计程序。怎么样,不是很困难吧?
【输入文件】
第一行有两个非负整数n和min。n表示下面有多少条命令,min表示工资下界。
接下来的n行,每行表示一条命令。命令可以是以下四种之一:
名称 | 格式 | 作用 |
I命令 | I_k | 新建一个工资档案,初始工资为k。如果某员工的初始工资低于工资下界,他将立刻离开公司。 |
A命令 | A_k | 把每位员工的工资加上k |
S命令 | S_k | 把每位员工的工资扣除k |
F命令 | F_k | 查询第k多的工资 |
_(下划线)表示一个空格,I命令、A命令、S命令中的k是一个非负整数,F命令中的k是一个正整数。
在初始时,可以认为公司里一个员工也没有。
【输出文件】
输出文件的行数为F命令的条数加一。
对于每条F命令,你的程序要输出一行,仅包含一个整数,为当前工资第k多的员工所拿的工资数,如果k大于目前员工的数目,则输出-1。
输出文件的最后一行包含一个整数,为离开公司的员工的总数。
【样例输入】
9 10
I 60
I 70
S 50
F 2
I 30
S 15
A 5
F 1
F 2
【样例输出】
10
20
-1
2
【约定】
l I命令的条数不超过100000
l A命令和S命令的总条数不超过100
l F命令的条数不超过100000
l 每次工资调整的调整量不超过1000
l 新员工的工资不超过100000
【评分方法】
对于每个测试点,如果你输出文件的行数不正确,或者输出文件中含有非法字符,得分为0。
否则你的得分按如下方法计算:如果对于所有的F命令,你都输出了正确的答案,并且最后输出的离开公司的人数也是正确的,你将得到10分;如果你只对所有的F命令输出了正确答案,得6分;如果只有离开公司的人数是正确的,得4分;否则得0分。
思路:看到数据范围,想到需要再log(n)时间范围内进行插入,删除,求k大。然而对于add和subtract操作,显然不能逐个相减,可以记录当前总共的增值。想到可以用平衡树来解决,这里才用的是size balanced tree。需要注意的是减去一定的工资后,将进行删除操作,删除时需要删除整个子树,而不是逐个删除!题目有个不太清楚的地方,就是如果在刚插入时工资太低而离开,将不算作是离开的员工。。。
- #include <iostream>
- #include <algorithm>
- using namespace std;
- const int N = 110000, M = 100000;
- struct sbt_node
- {
- int key, sz;
- sbt_node *lc, *rc;
- sbt_node(int x, int y);
- }NIL = sbt_node(0,0), *nil = &NIL;
- sbt_node::sbt_node(int x, int y=1)
- {
- key=x, sz=y, lc=rc=nil;
- }
- typedef sbt_node *node;
- node root=nil;
- int add, mi, leave;
- void right_rotate(node &y)
- {
- node x = y->lc;
- y->lc = x->rc;
- x->rc = y;
- x->sz = y->sz;
- y->sz = y->lc->sz + y->rc->sz + 1;
- y = x;
- }
- void left_rotate(node &x)
- {
- node y = x->rc;
- x->rc = y->lc;
- y->lc = x;
- y->sz = x->sz;
- x->sz = x->lc->sz + x->rc->sz + 1;
- x = y;
- }
- void maintain(node &t, bool right_high)
- {
- if(!right_high)
- {
- if(t->lc==nil)return;
- if(t->lc->lc->sz > t->rc->sz)
- {
- right_rotate(t);
- }
- else if(t->lc->rc->sz > t->rc->sz)
- {
- left_rotate(t->lc);
- right_rotate(t);
- }
- else return;
- }
- else
- {
- if(t->rc==nil)return;
- if(t->rc->rc->sz > t->lc->sz)
- {
- left_rotate(t);
- }
- else if(t->rc->lc->sz > t->lc->sz)
- {
- right_rotate(t->rc);
- left_rotate(t);
- }
- else return;
- }
- maintain(t->lc, 0);
- maintain(t->rc, 1);
- maintain(t, 0);
- maintain(t, 1);
- }
- void insert(node &t, int x)
- {
- if(t==nil)
- {
- t = new sbt_node(x);
- return;
- }
- t->sz++;
- if(x < t->key) insert(t->lc, x);
- else insert(t->rc, x);
- maintain(t, x >= t->key);
- }
- void del(node &t)
- {
- if(t==nil)return;
- if(t->key + add >= mi)
- {
- del(t->lc);
- t->sz = t->lc->sz + t->rc->sz + 1;
- }
- else
- {
- t = t->rc;
- del(t);
- }
- //don't put here: t->sz = t->lc->sz + t->rc->sz + 1;
- }
- int select(node t, int kth)
- {
- if(t==nil || kth < 1 || kth > t->sz)return -1;
- if(kth <= t->lc->sz) return select(t->lc, kth);
- else if(kth == t->lc->sz + 1) return t->key;
- else return select(t->rc, kth - t->lc->sz - 1);
- }
- void print(node t)
- {
- if(t==nil)return;
- putchar('(');
- print(t->lc);
- printf("size[%d]=%d/t", t->key + add, t->sz);
- print(t->rc);
- putchar(')');
- }
- int main()
- {
- int n, i, j, k, t;
- char s[20];
- freopen("cashier10.in", "r", stdin);
- freopen("out.txt", "w", stdout);
- add = 0;
- root = nil;
- leave = 0;
- int num=0;
- scanf("%d%d", &n, &mi);
- while(n--)
- {
- scanf("%s%d", s, &k);
- if(s[0] == 'A') add += k;
- else if(s[0] == 'I')
- {
- if(k >= mi) insert(root, k-add), num++;
- // if k < mi , he is not seen as the member
- // of the company who leave!!!
- }
- else if(s[0] == 'S')
- {
- add -= k;
- if(k!=0)del(root);
- }
- else if(s[0] == 'F')
- {
- int tmp=select(root, root->sz - k + 1);
- if(tmp!=-1) tmp += add;
- printf("%d/n", tmp);
- }
- //print(root); puts(""); //printf("add=%d/n", add);
- }
- printf("%d/n", num - root->sz);
- }