usaco 4.2 Drainage Ditches 网络流

 很明显的网络流问题,点数和边数都是200,采用Edmonds_karp的复杂度上限是O(VE^2),实际上一般情况下要比此上限小得多,所以N=200时也能很快解决

 

  1. #include <iostream>
  2. #include <algorithm>
  3. #include <string>
  4. #include <map>
  5. using namespace std;
  6. /*
  7. PROG: ditch
  8. LANG: C++
  9. ID: heben991
  10. */
  11. const int N = 210, INF = 2000000000, MaxF = 10000000;
  12. int g[N][N], f[N][N], inc[N], pre[N], q[N];
  13. int v, e;
  14. bool bfs(int src, int des)
  15. {
  16.     int fp, rp, i, u;
  17.     for(i = 1; i <= v; ++i)
  18.     {
  19.         pre[i] = -1;
  20.     }
  21.     q[fp=rp=0] = src;
  22.     inc[src] = INF;
  23.     while(fp <= rp)
  24.     {
  25.         u = q[fp++];
  26.         for(i = 1; i <= v; ++i)
  27.         if(pre[i]==-1 && f[u][i] < g[u][i])
  28.         {
  29.             inc[i] = min(inc[u], g[u][i]-f[u][i]);
  30.             pre[i] = u;
  31.             if(i == des) return true;
  32.             q[++rp] = i;
  33.         }
  34.     }
  35.     return false;
  36. }
  37. int Edmonds_karp(int src, int des)
  38. {
  39.     int i, j;
  40.     int maxflow = 0;
  41.     while( bfs(src,des) )
  42.     {
  43.         maxflow += inc[des];
  44.         for(i = des; i != src; i = pre[i])
  45.         {
  46.             f[pre[i]][i] += inc[des];
  47.             f[i][pre[i]] = -f[pre[i]][i];
  48.         }
  49.     }
  50.     return maxflow;
  51. }
  52. int main()
  53. {
  54.     int i, j, k, x, y;
  55.     freopen("ditch.in""r", stdin);
  56.     freopen("ditch.out","w",stdout);
  57.     scanf("%d%d", &e, &v);
  58.     for(i = 1; i <= e; ++i)
  59.     {
  60.         scanf("%d%d%d", &x, &y, &k);
  61.         g[x][y] += k;
  62.     }
  63.     printf("%d/n", Edmonds_karp(1,v) );
  64.     return 0;
  65. }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值