
分析:
暴力求每一段距离也可。
对于以本节点为根的二叉树,最远距离有三种可能:
1)最远路径来自左子树

2 )最远路径来自右子树(图示与左子树同理)
3)最远路径为左右子树距离根最远的两个节点,经过根结点连起来。
(多种最长路径)
需要的信息:
1)左子树的最远路径长度
2)右子树的最远路径长度
3)左右子树的深度(深度即最远节点)
定义结点:
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
构造返回值信息:
public static class ReturnType{
public int maxDistance;//最长距离
public int h; //高度
public ReturnType(int m, int h) {
this.maxDistance = m;;
this.h = h;
}
}
求解过程比较好写了:
public static ReturnType process(Node head) {
if(head == null) {
return new ReturnType(0,0);
}
//收信息
ReturnType leftReturnType = process(head.left);
ReturnType rightReturnType = process(head.right);
int includeHeadDistance = leftReturnType.h + 1 + rightReturnType.h;//情况3
int p1 = leftReturnType.maxDistance;
int p2 = rightReturnType.maxDistance;
int resultDistance = Math.max(Math.max(p1, p2), includeHeadDistance);//最长距离
int hitself = Math.max(leftReturnType.h, leftReturnType.h) + 1; //树的高度等于子树高度+1
return new ReturnType(resultDistance, hitself);
}
优化:
其实我们不需要返回左右子树深度,可以用一个全局变量记录。遇到NULL把变量记为0,不影响接下来的计算。
用一个含一个元素的数组来记录。因为某些二叉树题目不只需要一个信息,所以要利用全局数组。
public static int posOrder(Node head, int[] record) {
if (head == null) {
record[0] = 0;//重要
return 0;
}
//取信息
int lMax = posOrder(head.left, record);
int maxfromLeft = record[0];
int rMax = posOrder(head.right, record);
int maxFromRight = record[0];
int curNodeMax = maxfromLeft + maxFromRight + 1;//情况3
record[0] = Math.max(maxfromLeft, maxFromRight) + 1;
return Math.max(Math.max(lMax, rMax), curNodeMax);
}
最后放上全部代码:
package q;
public class Demo {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int maxDistance(Node head) {
int[] record = new int[1];
return posOrder(head, record);
}
public static class ReturnType{
public int maxDistance;//最长距离
public int h; //高度
public ReturnType(int m, int h) {
this.maxDistance = m;;
this.h = h;
}
}
public static ReturnType process(Node head) {
if(head == null) {
return new ReturnType(0,0);
}
//收信息
ReturnType leftReturnType = process(head.left);
ReturnType rightReturnType = process(head.right);
int includeHeadDistance = leftReturnType.h + 1 + rightReturnType.h;//情况3
int p1 = leftReturnType.maxDistance;
int p2 = rightReturnType.maxDistance;
int resultDistance = Math.max(Math.max(p1, p2), includeHeadDistance);//最长距离
int hitself = Math.max(leftReturnType.h, leftReturnType.h) + 1; //树的高度等于子树高度+1
return new ReturnType(resultDistance, hitself);
}
public static int posOrder(Node head, int[] record) {
if (head == null) {
record[0] = 0;//重要
return 0;
}
//取信息
int lMax = posOrder(head.left, record);
int maxfromLeft = record[0];
int rMax = posOrder(head.right, record);
int maxFromRight = record[0];
int curNodeMax = maxfromLeft + maxFromRight + 1;//情况3
record[0] = Math.max(maxfromLeft, maxFromRight) + 1;
return Math.max(Math.max(lMax, rMax), curNodeMax);
}
public static void main(String[] args) {
Node head1 = new Node(1);
head1.left = new Node(2);
head1.right = new Node(3);
head1.left.left = new Node(4);
head1.left.right = new Node(5);
head1.right.left = new Node(6);
head1.right.right = new Node(7);
head1.left.left.left = new Node(8);
head1.right.left.right = new Node(9);
System.out.println(maxDistance(head1));
Node head2 = new Node(1);
head2.left = new Node(2);
head2.right = new Node(3);
head2.right.left = new Node(4);
head2.right.right = new Node(5);
head2.right.left.left = new Node(6);
head2.right.right.right = new Node(7);
head2.right.left.left.left = new Node(8);
head2.right.right.right.right = new Node(9);
System.out.println(maxDistance(head2));
}
}
本文探讨了在二叉树中寻找最长路径的算法,详细解释了递归过程中的三种可能情况,包括路径完全位于左子树、右子树,或是跨越根节点连接左右子树。通过定义结点类和返回类型,文章提供了两种实现方式,一种使用自定义返回类型,另一种采用全局数组优化计算。
1万+

被折叠的 条评论
为什么被折叠?



