- 博客(1164)
- 资源 (50)
- 收藏
- 关注
原创 javascript 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,
2025-05-28 09:54:17
643
原创 PHP 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,
2025-05-28 09:12:48
865
原创 Python 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,
2025-05-27 09:49:24
2245
原创 Java 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,
2025-05-27 09:03:44
2308
原创 C# 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,
2025-05-26 09:40:50
3366
原创 C++ 程序求圆弧段的面积(Program to find area of a Circular Segment)
2 * r * Sin(X/2)高= OP = r * Cos(X/2)三角形面积= 1/2 * (2 * r * Sin(X/2)) * (r * Cos(X/2))因此线段面积= pi * r 2 * (角度/360) - 1/2 * r 2 * Sin(角度)Cos(X/2) = OP/AO 即 OP = AO * Cos(X/2)Sin(X/2) = AP/AO 即 AP = AO * Sin(X/2)三角形 AOB 的面积= 1/2 * 底边 * 高。在上图中,假设扇区形成的角度 = X,
2025-05-26 09:12:00
3191
原创 C# 控制台程序获取用户输入数据
在 C# 控制台程序中获取用户输入通常使用 Console.ReadLine() 和 Console.ReadKey() 方法。
2025-05-24 10:35:09
3272
原创 C# 按行写入txt大量数据
在 C# 中高效写入大量数据到文本文件时,建议使用 StreamWriter 并逐行写入,避免一次性加载全部数据到内存。// 示例:逐行写入 100 万条数据// 使用 StreamWriter 并启用自动刷新缓冲区(或手动控制)i++)string line = $"这是第 {i} 行数据";// 可选:每写入 N 行手动刷新一次(平衡性能与内存)
2025-05-23 10:15:29
6049
原创 C# 高效读取大文件
C# 高效读取大文件,语法简洁但需注意异常处理(如文件不存在时抛出 FileNotFoundException)。StreamReader.ReadLine:通过流式处理逐行加载文本,避免一次性加载整个文件到内存,适合超大文本文件(如日志文件)。对于超大规模文件(如数十 GB),需避免 File.ReadAllLines 等一次性加载方法,防止内存溢出。// 处理二进制数据块。BufferedStream 加速。
2025-05-23 09:00:32
6300
原创 C# WinForm DataGridView 实现自动生成行序号
DataGridView 实现自动生成行序号。在数据源中创建自增列(如DataTable),但此方法在排序/过滤后序号不会动态更新。优先使用RowPostPaint事件方案,支持实时更新且不依赖数据源;在事件中动态绘制行号,此方法支持排序/过滤后的自动更新。数据源绑定方式更简单,但需注意排序后需手动刷新序号。一、RowPostPaint事件绘制行号(推荐)// 动态计算行头宽度以适应序号位数。dt.Columns.Add("数据列");
2025-05-22 09:23:02
5481
原创 C# 大文件分割
C# 大文件分割,Console.WriteLine("开始读取文件【{1}】:{0}", filePath, DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss.fff"));--当执行文件分割时,每个分隔出来的文件大小,单位:MB -->
2025-05-22 09:13:11
5860
原创 Javascript 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。
2025-05-21 09:24:25
7081
原创 PHP 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。
2025-05-21 09:04:55
6794
原创 Python 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。
2025-05-20 09:23:56
8557
原创 Java 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。
2025-05-20 09:06:56
8603
原创 C# 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )现在让我们看看计算圆的扇形的公式。
2025-05-19 09:21:22
9044
原创 C++ 扇形的面积(Area of a Circular Sector)
在该图中,绿色阴影部分是扇形,“r”是半径,“theta”是角度,如图所示。在这里,我们可以说阴影部分是小扇形,而其他部分是大扇形。“L”是扇形的弧度。圆形扇区或圆形扇区是圆盘上由两个半径和一个圆弧围成的部分,其中较小的区域称为小扇区,较大的区域称为大扇区。扇形面积的计算方法与圆面积的计算方法类似,只需用圆面积乘以扇形的角度即可。扇区 = ( pi * 20*20 ) * ( 145 / 360 )扇区 = ( pi * 9*9 ) * ( 60 / 360 )时间复杂度: O(1)辅助空间: O(1)
2025-05-19 09:03:54
8962
原创 C# WinForm treeView 全选反选 点击过快节点选中状态未选中或选中状态未取消
C# WinForm treeView 全选反选 点击过快节点选中状态未选中或选中状态未取消。解除并重新绑定事件,在 AfterCheck 事件中暂时解除事件绑定,避免递归触发导致逻辑冲突,处理完成后再重新绑定事件。// 解除事件// 更新子节点// 更新父节点状态// 重新绑定事件递归设置子节点状态强制同步父节点与所有子节点的选中状态,通过递归遍历确保层级一致性。
2025-05-17 09:50:59
9437
原创 查看Windows电脑的架构是ARM还是AMD
如果结果是"AMD64",则表示系统是64位AMD架构;如果是"ARM",则表示系统是ARM架构。3、在系统信息窗口中,查找“系统类型”字段。如果显示“x64 基于 PC”,则你的操作系统是64位的,通常对应的是AMD架构;如果显示“ARM 基于 PC”,则你的操作系统是ARM架构的。1、按下 Win + R 快捷键,打开“运行”对话框或者直接CMD。1、按下 Win + R 快捷键,打开“运行”对话框或者直接CMD。2、输入 cmd,然后按 Enter 键,打开命令提示符。二、使用环境变量命令。
2025-05-17 09:29:23
8852
原创 C# DataGridView 选中所有复选框
C# DataGridView 选中所有复选框,当您将该记录添加到这些记录的bool IsChecked绑定列表时,复选框行会自动创建。您可以通过在记录中设置属性来操作该复选框,而无需调用 UI 对象本身。dataGridView1_CellPainting() 和 dgvCheckBox_CheckedChanged() 用于完整检查/释放操作。如果单击顶部的完整选中/释放复选框,同时选中包含复选框的列,则选定区域不会改变。如果混合了已选中和未选中,则所有都将被提升为已选中。
2025-05-16 09:26:03
9834
原创 在 C# 中将 DataGridView 数据导出为 CSV
现在,运行应用程序。点击“导出为 CSV”按钮时,它会询问文件保存位置。输入文件名,然后点击“确定”。它会生成一个 CSV 文件。在此代码示例中,我们将学习如何使用 C# 代码将 DataGridView 数据导出到 CSV 文件并将其保存在文件夹中。在这个程序中,首先,我们必须连接到数据库并从中获取数据。然后,我们将在数据网格视图中显示该数据,如下图所示。让我们转到页面加载事件,获取员工数据,并绑定数据 GridView。然后,在按钮单击事件处理程序上,编写以下代码。希望这段代码能帮助到所有读者。
2025-05-16 09:18:15
9963
原创 C#.NET 或 VB.NET Windows 窗体中的 DataGridView – 技巧、窍门和常见问题
DataGridView 控件是一个 Windows 窗体控件,它允许您自定义和编辑表格数据。它提供了许多属性、方法和事件来自定义其外观和行为。在本文中,我们将讨论一些常见问题及其解决方案。这些问题来自各种来源,包括一些新闻组、MSDN 网站以及一些由我在 MSDN 论坛上解答的问题。
2025-05-15 09:23:25
8578
原创 如何在 C# 中自定义 Datagridview 标题
本教程介绍了如何使用C#编程语言自定义DataGridView控件的标题样式。通过设置ColumnHeadersDefaultCellStyle属性,可以轻松更改标题的字体、颜色、背景色和对齐方式。示例代码展示了如何将标题字体设置为Tahoma、25号、加粗,前景色为蓝色,背景色为黄色,并将文本对齐方式设置为左上角。此外,教程还提供了如何从DataTable填充DataGridView的示例,包括添加列和行数据。通过这些步骤,开发者可以快速实现DataGridView标题的个性化定制。
2025-05-15 09:10:52
8508
原创 WPF Datagrid 数据加载和性能
启用排序后,加载一半的数据项本身就花了 2 分钟多,加载全部数据项则花了 5 分钟多,我甚至因为太麻烦而关掉了应用程序。如果你注意到 ViewModel 的代码,你应该会看到我在加载数据时禁用了网格,并在完成后重新启用它。当我运行应用程序时,你会注意到,当我加载 1000 个项目时,同一个应用程序的性能(除了我刚才提到的 XAML 代码之外,没有任何代码更改)比以前好了很多。为了将此“数据”应用到我的WPF数据网格,我将这个ViewModel实例应用到我的类的DataContext中。
2025-05-14 10:02:46
8917
原创 JavaScript 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
有两个圆 A 和 B,圆心分别为C1(x1, y1)和C2(x2, y2),半径分别为R1和R2。任务是检查圆 A 和 B 是否相互接触。4、如果C1C2 == R1 + R2:圆 A 和 B 相互接触。1、如果C1C2 <= R1 – R2:圆 B 位于 A 内。2、如果C1C2 <= R2 – R1:圆 A 位于 B 内。3、如果C1C2 < R1 + R2:圆互相相交。5、否则,圆 A 和圆 B 不重叠。输入: C1 = (3, 4)输入: C1 = (2, 3)输入: C1 = (-10,8)
2025-05-14 09:08:24
8132
原创 Python 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
有两个圆 A 和 B,圆心分别为C1(x1, y1)和C2(x2, y2),半径分别为R1和R2。任务是检查圆 A 和 B 是否相互接触。4、如果C1C2 == R1 + R2:圆 A 和 B 相互接触。1、如果C1C2 <= R1 – R2:圆 B 位于 A 内。2、如果C1C2 <= R2 – R1:圆 A 位于 B 内。3、如果C1C2 < R1 + R2:圆互相相交。5、否则,圆 A 和圆 B 不重叠。输入: C1 = (3, 4)输入: C1 = (2, 3)输入: C1 = (-10,8)
2025-05-13 09:26:28
8857
原创 Java 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
有两个圆 A 和 B,圆心分别为C1(x1, y1)和C2(x2, y2),半径分别为R1和R2。任务是检查圆 A 和 B 是否相互接触。4、如果C1C2 == R1 + R2:圆 A 和 B 相互接触。1、如果C1C2 <= R1 – R2:圆 B 位于 A 内。2、如果C1C2 <= R2 – R1:圆 A 位于 B 内。3、如果C1C2 < R1 + R2:圆互相相交。5、否则,圆 A 和圆 B 不重叠。输入: C1 = (3, 4)输入: C1 = (2, 3)输入: C1 = (-10,8)
2025-05-13 09:05:54
9112
原创 C# 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
有两个圆 A 和 B,圆心分别为C1(x1, y1)和C2(x2, y2),半径分别为R1和R2。任务是检查圆 A 和 B 是否相互接触。4、如果C1C2 == R1 + R2:圆 A 和 B 相互接触。1、如果C1C2 <= R1 – R2:圆 B 位于 A 内。2、如果C1C2 <= R2 – R1:圆 A 位于 B 内。3、如果C1C2 < R1 + R2:圆互相相交。5、否则,圆 A 和圆 B 不重叠。输入: C1 = (3, 4)输入: C1 = (2, 3)输入: C1 = (-10,8)
2025-05-12 10:03:41
7381
原创 C++ 检查两个给定的圆是否相切或相交(Check if two given circles touch or intersect each other)
要判断两个圆是否相互接触,可以通过计算两个圆心之间的距离并与两圆半径之和或差进行比较。具体步骤如下:首先,计算圆心C1(x1,y1)和C2(x2,y2)之间的距离d,公式为d = sqrt((x1-x2)^2 + (y1-y2)^2)。然后,根据d与两圆半径R1和R2的关系判断两圆的位置关系:如果d <= R1 - R2,圆B位于圆A内;如果d <= R2 - R1,圆A位于圆B内;如果d < R1 + R2,两圆相交;如果d == R1 + R2,两圆相切;否则,两圆不接触。通过这种方法
2025-05-12 09:02:19
6865
原创 WPF 性能 UI 虚拟化 软件开发人员的思考
因此,如果您的 ItemsControl 显示已加载的数据,那么您就有麻烦了。当我在列表中运行包含 1000000 个项目的测试时,在没有虚拟化的情况下,程序根本无法启动。所以我不得不终止它。例如,如果 ListView 中有 1000 个文本块控件,但您只能查看其中的 10 个,那么 VisualTree 中也只会显示 10 个文本块。结果发现,仅使用 StackPanel 时,对于使用的 10000 个项目(为了加快测量速度,减少了项目数量),内存占用约为 176 MB,启动时间为 7 到 10 秒。
2025-05-10 10:12:52
7505
原创 C# WinForm DataGridView 非常频繁地更新或重新绘制慢问题及解决
我在其他 DGV 问题中也看到过类似的建议,但我原本只期望获得轻微的视觉效果提升,而不是全新的体验。有趣的是,当我这样做时,即使我将计时器设置为 0.1 秒,它也只会每秒触发一次。为了保存我在这个问题中的分析工作,避免被当作重复数据删除,想获取一些以毫秒为单位的目标数据,用于重新绘制DGV。因此,您可以选择创建子类或通过反射访问它,它主要针对滚动闪烁的情况,但也有助于避免更新延迟。我知道有几个关于速度慢的 DataGridViews 的问题,确实尝试了那里提到的所有内容,大多数都是关于更复杂的数据绑定。
2025-05-10 09:30:52
7280
原创 C# WinForm 如何高效地将大量数据从 CSV 文件导入 DataGridView
如果你的数据不包含标题(第一行是数据行)。因此,当你尝试将 CSV 读取器添加到 DataSource 时,会出现 ArgumentException(添加了相同键的项)。hasHeaders在 CachCsvReader 构造函数中设置参数成功了,它将数据添加到了 DataGridView(非常快)。如果你有非常多的csv文件,每个文件包含N多行与M多列,如:18000 行和 27 列。现在,想制作一个 Windows 窗体应用程序,导入它们并在 datagridview 中显示,然后进行一些数学运算。
2025-05-09 09:34:23
8736
原创 如何在 DataGridView 中加载大型数据集
加载时间会随着行数的增加而增加(例如,一个表有 10 万行,需要一次性加载所有数据)。正如标题所示,我们通常有一个需要在 DataGridView 控件中显示的大型数据集,并且数据集越大,在控件中加载行所需的时间就越长,并且 UI 可能会挂起。以块的形式检索数据然后使用 MERGE与datagridview控件绑定是明智的,因为通过这种方式,您可以获得接下来的 N 条记录而没有任何开销,并且只需不到一秒钟。是的,假设数据源有 100,000 行,上述解决方案将一次加载并绑定 100,000 行。
2025-05-09 09:07:15
8182
原创 C# 中的 DataGridView 控件
如果您要显示一个包含只读值的小型网格,或者要允许用户编辑包含数百万条记录的表格,DataGridView 控件将为您提供一个易于编程且节省内存的解决方案。DataGridView 控件支持将数据绑定到这些接口返回的对象的公共属性,或绑定到 ICustomTypeDescriptor 接口(如果返回的对象实现了该接口)返回的属性集合。选择您的数据连接,如果您已经有可用的连接,请选择该连接,否则建立新的连接,然后按照步骤操作,然后单击“下一步”。如果您的表单加载事件尚未包含此代码,请添加此代码。
2025-05-08 09:32:01
7627
原创 如何在 C# 和 .NET 中打印 DataGrid
最初即兴的建议是使用我的屏幕截图文章来截取表单,但这当然无法解决打印 DataGrid 中虚拟显示的无数行数据的问题。因此,最终确定的方法是从 DataGrid 中捕获颜色和字体属性用于打印输出,并从 DataSet 中捕获行中的信息。为了将 DataGridPrinter 的绘制功能封装到 Printer 中,我创建了 DataGridPrinter 类,如下图 2 所示。该方法使用 DataGrid 的属性,用适当的颜色绘制每一行,并使用 DataGrid 的字体绘制每个字符串。
2025-05-08 09:09:35
8051
原创 WinForm DataGridView 大量数据一次性显示 界面不卡
WinForm DataGridView 大量数据一次性显示 界面不卡。讨论一个常见DataGridView的数据加载问题及其解决方法,希望对大家有所帮助。正如标题所示,我们通常有一个需要在 DataGridView 控件中显示的大型数据集,并且数据集越大,在控件中加载行所需的时间就越长,并且 UI 可能会挂起
2025-05-07 09:48:15
8158
原创 Javascript 检查某个点是否存在于圆扇区内(Check whether a point exists in circle sector or not)
2、那么角度必须介于 StartingAngle(起始角) 和 EndingAngle(终止角) 之间,并且半径必须介于 0 和您的半径之间。1、使用这个将 x, y 转换为极坐标角度 = atan(y/x);半径 = sqrt(x * x + y * y);在此图像中,起始角度为 0 度,半径为 r,假设彩色区域百分比为 12%,则我们计算结束角度为360/百分比 + 起始角度。我们有一个以原点 (0, 0) 为中心的圆。作为输入,我们给出了圆扇区的起始角度和圆扇区的大小(以百分比表示)。
2025-05-07 09:12:01
8618
原创 Python 检查某个点是否存在于圆扇区内(Check whether a point exists in circle sector or not)
2、那么角度必须介于 StartingAngle(起始角) 和 EndingAngle(终止角) 之间,并且半径必须介于 0 和您的半径之间。1、使用这个将 x, y 转换为极坐标角度 = atan(y/x);半径 = sqrt(x * x + y * y);在此图像中,起始角度为 0 度,半径为 r,假设彩色区域百分比为 12%,则我们计算结束角度为360/百分比 + 起始角度。我们有一个以原点 (0, 0) 为中心的圆。作为输入,我们给出了圆扇区的起始角度和圆扇区的大小(以百分比表示)。
2025-05-06 09:15:29
7556
原创 Java 检查某个点是否存在于圆扇区内(Check whether a point exists in circle sector or not)
2、那么角度必须介于 StartingAngle(起始角) 和 EndingAngle(终止角) 之间,并且半径必须介于 0 和您的半径之间。1、使用这个将 x, y 转换为极坐标角度 = atan(y/x);半径 = sqrt(x * x + y * y);在此图像中,起始角度为 0 度,半径为 r,假设彩色区域百分比为 12%,则我们计算结束角度为360/百分比 + 起始角度。我们有一个以原点 (0, 0) 为中心的圆。作为输入,我们给出了圆扇区的起始角度和圆扇区的大小(以百分比表示)。
2025-05-06 09:00:42
7928
postgis测试数据库 科罗拉多州百年一遇的洪泛区 包含 kmz、geojson、shapefile
2025-03-20
Windows 解压版 PostgreSQL16.8-1 对应 PostGIS 3.5.2
2025-03-18
Windows 解压版 PostgreSQL16.8-1
2025-03-18
deepseek java sdk deepseek4j-1.4.3
2025-03-07
使用 PHP Deepseek 实现问答 ask-deepseek
2025-03-06
PHP API 客户端,可让您与 deepseek API 进行交互 deepseek-php-client-2.0.3
2025-03-06
python 强大的混合专家 (MoE) 语言模型 DeepSeek-V3
2025-03-06
.NET 9.0 中 DeepSeek 模型入门示例
2025-03-06
该项目是一个轻量级 AI 代理,利用 Deepseek LLM 在本地运行并与 Spring Boot 集成
2025-03-06
使用纯 C++ 对 DeepSeek 系列大型语言模型进行 CPU 推理
2025-03-06
deepseek java sdk deepseek4j-1.4.5
2025-03-06
DeepSeek API 的 Python 客户端
2025-03-06
C++ 基础知识了解、学习及源代码案例分享
2025-03-05
C语言比较全面的经典源代码示例包含220个例子
2025-03-05
springmvc框架模板(含例子,可以用作计算机毕业设计开发) springmvc源代码
2025-03-05
机器人算法的 Python 示例代码
2025-03-05
将大学阶段的实训内容,按照专业课程设计(包括上机实验、课程设计、下学年的毕业设计等)、竞赛项目、科创项目、小型编程项目这四个门类进行整理汇总
2025-03-05
用于快速工程的指南、论文、讲座、笔记本和资源 Prompt-Engineering
2025-03-05
带有 Multisim 10 示例的基本电子电路
2025-03-05
OpenCV C++ 示例
2025-03-05
面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.1
2025-03-05
面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.4
2025-03-05
使用 SignalR 在 .NET Core 8 最小 API 中构建实时通知
2025-03-03
C# 简单数字时钟源代码
2025-03-03
C++与C#(仅支持YUV2编码格式下截图)EasyPlayer RTSP是一款精炼、高效、稳定的RTSP流媒体播放器
2025-03-03
.NetCore WPF Rtsp视频流转Websocket实现Web实时查看摄像头 C#通过FFmpeg播放Rtsp流
2025-03-03
适用于 .NET Core 3.0-.NET 5.0 的 C# RTSP 客户端 视频截图
2025-03-03
在 .net 9 中如何重新添加Swagger或改用Scalar
2025-02-20
在 .NET 9.0 Web API 中实现 Scalar 接口文档及JWT集成
2025-02-20
在 ASP .NET Core 9.0 中使用 Scalar 创建漂亮的 API 文档
2025-02-20
.NET 9 彻底改变了 API 的文档:从 Swashbuckle 到 Scalar
2025-02-19
jdk-8u431-windows-x64
2025-01-21
java jdk-8u431-windows-x64
2025-01-21
ASP.NET Core 6 MVC 文件上传
2025-01-21
Asp.net core大文件下载 Asp.net-core-large-file-download
2025-01-21
Asp.net Core 6.0 中间件压缩静态文件发送到浏览器,而无需按需压缩
2025-01-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人