自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1122)
  • 资源 (50)
  • 收藏
  • 关注

原创 C# 如何验证磁盘路径,如:D:\\m\aa.txt

异常处理必要性:Path.GetFullPath()能捕捉到逻辑错误(如格式错误),但需通过try-catch捕获。存在性检查场景:若仅需验证路径合法性而非实体存在性,可跳过File.Exists步骤。正则表达式细化:可根据需求调整正则表达式,例如支持网络路径或特定扩展名。非法字符与格式验证:优先排除无效字符和格式错误,避免后续操作异常。// 目录存在但文件不存在。// 包含无效冒号等字符。// 路径包含非法字符。// 正则表达式验证。

2025-04-28 10:15:24 2009

原创 如何在 Windows 10 中使用 WSL 和 Debian 安装 Postgresql 和 Postgis

安装 Postgresql 和 Postgis 的常规方法需要设置多个二进制文件,并且工作流程通常在图形用户界面 (GUI) 上进行。我们希望找到一种在 Windows 10 中安装 Postgresql 和 Postgis 的方法,同时保留 Linux 的 shell 体验。本教程展示了在 Windows 10 中的 Debian 应用程序(也可以是 Ubuntu)内安装数据库的过程,该应用程序实际上可以从 QGIS 访问。输入用户名:“hatari”和密码:“labs”

2025-04-26 10:33:42 2743

原创 如何在 Ubuntu 22.04|20.04|18.04 上安装 PostGIS

本文将介绍如何在 Ubuntu 22.04|20.04|18.04 Linux 上安装 PostGIS。PostGIS 是一个开源 PostgreSQL 数据库扩展,用于在 PostgreSQL 对象关系数据库上创建地理对象。PostGIS 的功能源自开放地理空间联盟 SQL 规范。PostGIS 可以安装在 Ubuntu、Debian、SUSE Linux、基于 Red Hat 的 Linux 系统(如 CentOS、Scientific Linux、Windows 和 macOS)上。

2025-04-26 10:18:47 2960

原创 在 Ubuntu 22.04|20.04|18.04 上安装 PostgreSQL 13

PostgreSQL 是一种非常流行的开源对象关系数据库管理系统 (DBMS),旨在保证可靠性、效率和数据完整性。开发工作现已超过 30 年,该项目在可靠性、功能稳健性和性能方面赢得了良好的声誉。在本教程中,我们将解释如何在 Ubuntu 22.04|20.04|18.04 Linux 服务器上安装和配置 PostgreSQL 13 数据库服务器。数千家公司使用 PostgreSQL 来支持支付交易、大量网站流量、电子商务平台等。

2025-04-25 09:56:25 5975

原创 在 Ubuntu 24.04/22.04/20.04 上安装 pgAdmin 4

这篇文章主要是为了指导新用户如何在 Ubuntu Linux 系统上安装 pgAdmin 4。pgAdmin 是一个功能丰富的开源 PostgreSQL 管理和开发平台,可在 Linux、Unix、Mac OS X 和 Windows 上运行。使用 pgAdmin,您可以使用直观且功能强大的 Web 界面管理 PostgreSQL 数据库服务器(从版本 9.2 开始)。如果您运行的是 Ubuntu 系统或 Linux Mint,本文将适合您。

2025-04-25 09:10:02 5737

原创 如何通过六个简单的步骤在 Ubuntu 18.04 LTS(Bionic Beaver)上安装 Postgresql-10 和 PostGIS-2.4

4. psql -h localhost -U USER_NAME_HERE DATABASE_NAME_HERE Postgresql 将要求您输入密码。然后您应该看到以下内容:DATABASE_NAME_HERE =>要退出,请输入:- \q。将DATABASE_NAME_HERE 和 USER_NAME_HERE替换 为您要使用的值。# 这将提示您输入数据库密码...还请注意下面的大写字母“O”而不是数字“0”(零):-1.检查你的 Ubuntu 版本:- lsb_release -a。

2025-04-24 09:24:40 6994

原创 C# Windows IIS 配置编辑器 应用程序初始化 <applicationInitialization>

applicationInitialization> 元素指定在收到请求之前主动执行 Web 应用程序初始化。如果在接收 HTTP 请求之前执行初始化连接、启动内存缓存、运行查询和编译页面代码等初始化序列,则应用程序可以更快地启动。应用程序初始化可以在应用程序启动时自动启动初始化过程。应用程序初始化不一定使初始化过程运行得更快;它更快地启动了这个过程。应用程序初始化还使你能够在初始化期间将请求重定向到静态页面(如占位符或闪屏),从而增强用户体验。

2025-04-24 09:04:43 6586

原创 PHP 计算圆周率的程序(Program to find Circumference of a Circle)

在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。

2025-04-23 10:06:55 6324

原创 Javascript 计算圆周率的程序(Program to find Circumference of a Circle)

在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。

2025-04-23 09:03:19 6546

原创 Python 计算圆周率的程序(Program to find Circumference of a Circle)

在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。

2025-04-22 10:09:17 6391

原创 java 计算圆周率的程序(Program to find Circumference of a Circle)

在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。

2025-04-22 09:25:43 6519

原创 C# 计算圆周率的程序(Program to find Circumference of a Circle)

在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。

2025-04-21 10:10:45 8889

原创 C++ 计算圆周率的程序(Program to find Circumference of a Circle)

在圆中,圆边界上的点与圆心的距离相同。圆的周长可以用以下公式简单计算。Circumference(周长) = 31.415。给定圆的半径,编写程序来查找其周长。,pi 的值 = 3.1415。输出:周长 = 12.566。输出:周长 = 50.264。,因为没有占用额外的空间。周长 = 2*pi*r。,其中 r 是圆的半径。,因为没有循环或递归。

2025-04-21 09:12:11 8850

原创 Windows .NET Core 应用程序部署到 IIS 解决首次访问加载慢的问题 设置IIS站点启动时自动访问网页

在集合编辑器中,要添加要初始化的应用程序,请单击“添加”,单击“主机名”,然后将主机名设置为主机名。单击initializationPage并将其设置为应用程序的URL。要指定每当应用程序重新启动时自动启动初始化过程,请将doAppInitAfterRestart设置为true。若要指定初始化期间要返回的静态文件的名称,请将remapManagedRequestsTo设置为该文件的名称。如果上面两篇文章还是不能预加载服务,请参考下面设置IIS站点启动时自动访问网页的操作。

2025-04-19 11:06:43 9206

原创 Windows Server .NET Core 应用程序部署到 IIS 解决首次访问加载慢的问题

项目发布到IIS以后第一次请求特别慢大概7、8秒甚至超时等现象,然后每隔5分钟请求一次大概2、3秒,下面讲解下解决Windows【本文使用Windows Server 2019】下 IIS 10 的过程。一步一步展开选择Web 服务器 - 应用程序开发 - 应用程序初始化(点击安装,等待安装完成,重新启动服务器即可。本文已安装,所有后面括号显示已安装。如果没有弹出添加角色和功能向导。至此,相关配置基本完成。

2025-04-19 10:41:24 9326

原创 Windows .NET Core 应用程序部署到 IIS 解决首次访问加载慢的问题

项目发布到IIS以后第一次请求特别慢大概7、8秒甚至超时等现象,然后每隔5分钟请求一次大概2、3秒,下面讲解下解决Windows【本文使用Windows11】下 IIS 10 的过程。第三步设置启动模式为AlwaysRunning即可。点击确定安装完成即可,重新启动服务器。

2025-04-18 10:13:32 11880

原创 Windows 上安装解压版 PostgreSQL16.8-1 与 PostGIS 3.5.2 遇到的问题处理 篇3

psql: 错误: 连接到"localhost" (::1)上的服务器,端口5432失败:FATAL: password authentication failed for user "postgres"psql: 错误: 连接到"localhost" (::1)上的服务器,端口5432失败:FATAL: password authentication failed for user "postgres"您没有LD_LIBRARY_PATH在 PostgreSQL 数据库服务器的环境中设置环境变量。

2025-04-18 09:20:38 12354

原创 Windows 上安装解压版 PostgreSQL16.8-1 与 PostGIS 3.5.2 篇2

Windows 上安装解压版 PostgreSQL16.8-1 与 PostGIS 3.5.2,创建的表空间,你也可以使用pg_default默认表空间,点击确定即可。下载解压版,下载后解压到指定目录【下载PostGIS或直接访问。

2025-04-17 09:38:30 12844

原创 Windows 上安装解压版 PostgreSQL16.8-1 与 PostGIS 3.5.2 篇1

Windows 上安装解压版 PostgreSQL16.8-1,通过 pg_ctl -D data start 启动,尽量不要使用特殊字符,如$@#%&*,安装解压版PostGIS会有问题。启动pgsql:bin\pg_ctl -D data start。重启命令:bin\pg_ctl -D data restart。关闭命令:bin\pg_ctl -D data stop。这种方式用于临时启动,最好注册为window服务。

2025-04-17 09:17:55 13484

原创 PHP N*M 网格(表格)中的矩形数量

我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。

2025-04-16 09:52:52 13195

原创 JavaScript N*M 网格(表格)中的矩形数量

我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。

2025-04-16 09:03:25 12015

原创 Python N*M 网格(表格)中的矩形数量

我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。

2025-04-15 10:02:53 11079

原创 Java N*M 网格(表格)中的矩形数量

我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。

2025-04-15 09:06:51 11431

原创 C# N*M 网格(表格)中的矩形数量

我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。

2025-04-14 10:50:25 11563

原创 C++ N*M 网格(表格)中的矩形数量

我们可以说,对于 N*1,将有 N + (N-1) + (n-2) …+ 1 = (N)(N+1)/2 个矩形。对于 N*M 我们有 (M)(M+1)/2 (N)(N+1)/2 = M(M+1)(N)(N+1)/4。N*M 网格可以表示为 (N+1) 条垂直线和 (M+1) 条水平线。如果网格是 3×1,则会有 3 + 2 + 1 = 6 个矩形。所以总矩形的公式将是 M(M+1)(N)(N+1)/4。如果网格是 2×1,则会有 2 + 1 = 3 个矩形。所以 N×2 = 3 (N)(N+1)/2。

2025-04-14 10:16:31 11516

原创 使用 PostgreSQL PostGIS 创建地理数据库并连接到 QGIS

GIS 数据在许多行业中主要用于制图和空间分析。GIS 数据的主要类型是栅格和矢量。如果您正在阅读本文,您可能不需要对 GIS 数据进行介绍,但下面将简要介绍一下。栅格文件是具有定义分辨率的连续网格数据,通常存储为 .tiff、.jpeg、.bmp 或 .png。例如,以坐标系为地理参考的卫星图像就是栅格文件。矢量文件可以是点、线或多边形特征。最常见的是,它们存储为 Shapefile,但也可以是 GeoJSON、KML、GML、TIGER 或嵌套在地理数据库 (GDB) 中。

2025-04-12 09:42:48 10954

原创 PostgreSQL与PostGIS版本对应

PostGIS 栅格功能(在 2.0 中引入)依赖于 GDAL,因此要获得栅格功能,您需要使用 GDAL 支持进行编译,最好是 1.9 或更高版本。虽然您可以在没有栅格支持的情况下编译 PostGIS 2.0,但您真的应该重新考虑这个决定,特别是如果您是软件包维护者(如果您这样做,您会有很多恼火的用户。对于不推荐的,这意味着虽然您可以让 PostGIS 使用这些版本,但您将错过一些 PostGIS 功能。无表示您可以在没有 GEOS 的情况下使用该版本,但不建议这样做,因为许多功能将无法安装。

2025-04-12 09:18:01 10420

原创 如何在 Mac 上安装 Python

所有最新的 MacOS(从 macOS 12.3 开始)都预装了 Python 版本(通常是 Python 2.x),但它已经过时并且不再受支持。要充分利用 Python 的功能,您需要安装。本文提供了,展示了(MacBook 旧版本和新版本,如 M1、M2、M3 或 M4)上安装和更新 Python 的所有有效方法,从检查预安装版本到下载和更新最新的 Python 并设置基本工具(如和,本指南将帮助您轻松地在任何 MacBook 设备上安装 Python。

2025-04-11 10:41:53 13748

原创 如何在 Ubuntu 22.04 上安装最新的 PostgreSQL 与 PostGIS

PostGIS是一个功能强大的 开源空间数据库扩展,适用于PostGIS 是PostgreSQL,可用于存储、查询和操作地理和几何数据。如果您使用的是 Ubuntu 22.04,并且需要设置最新版本的 PostGIS 以满足您的空间数据需求,那么您来对地方了。Ubuntu 22.04 的默认存储库可能并不总是具有最新版本的 PostGIS,但您可以使用 PostgreSQL apt 存储库获取最新版本。安装 PostGIS 后,您可以创建一个新的 PostgreSQL 数据库并在其中启用 PostGIS。

2025-04-11 09:34:38 13106

原创 windows 安装 pygame( pycharm)

并且在python安装模块的目录下(D:\Program Files\Python\Python37\Lib\site-packages)重新安装pygame,发现这次pygame直接和pip一样在相同目录(D:\Program Files\Python\Python37\Lib\site-packages)下了。第一遍尝试,觉得是安装的路径不对,因该在python的目录(D:\Program Files\Python\Python37)中安装pygame,重新安装,出错。4.使用pip安装pygame。

2025-04-10 10:12:30 14086

原创 PHP 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-10 09:05:02 13896

原创 javascript 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-09 09:39:40 12060

原创 Python 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-09 09:12:24 12088

原创 Java 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-08 10:21:49 11485

原创 C# 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-08 09:07:36 12566

原创 C语言 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-07 10:20:08 10119

原创 C++ 计算矩形中的正方形数量(Count number of squares in a rectangle)

对于 m = n = 4,输出 16 + 9 + 4 + 1 [ 16 个大小为 1×1 + 9 个大小为 2×2 + 4 个大小为 3×3 + 1 个大小为 4×4 ]m = n = 3,输出:9 + 4 + 1 [ 9 个大小为 1×1 + 4 个大小为 2×2 + 1 个大小为 3×3 ]当 n 为较大维度时,总方块数 = mx (m+1) x (2m+1)/6 + (nm) xmx (m+1)/2。因此,方格总数为 m(m+1)(2m+1)/6 + (nm)*m(m+1)/2。

2025-04-07 09:17:12 10179

原创 如何在 Linux 上安装 Python

如何在 Linux 上安装 Python,pip 是 Python 的软件包安装程序,可用于安装和管理外部 Python 软件包和库。在 Linux 上安装 Python – 常见问题解答。

2025-04-05 12:29:46 9999

原创 如何在 Windows 10 上安装 PyGame

PyGame 是 Python 编程语言中的一组跨平台模块,这意味着您可以在任何操作系统上安装它,这篇文章告诉您如何在 Windows 10 上安装 PyGame。

2025-04-05 11:57:44 9370

原创 如何在 Windows 上安装 Python

如何在 Windows 上安装 Python,如果您选择“自定义安装”,请选择可选功能,如pip、tcl/tk和文档。选择安装位置或接受默认位置。

2025-04-04 16:16:04 9323

postgis测试数据库 科罗拉多州百年一遇的洪泛区 包含 kmz、geojson、shapefile

postgis测试数据库 科罗拉多州百年一遇的洪泛区 包含 kmz、geojson、shapefile。GIS 数据在许多行业中主要用于制图和空间分析。GIS 数据的主要类型是栅格和矢量。栅格文件是具有定义分辨率的连续网格数据,通常存储为 .tiff、.jpeg、.bmp 或 .png。矢量文件可以是点、线或多边形特征。最常见的是,它们存储为 Shapefile,但也可以是 GeoJSON、KML、GML、TIGER 或嵌套在地理数据库 (GDB) 中。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/146397273

2025-03-20

Windows 解压版 PostgreSQL16.8-1 对应 PostGIS 3.5.2

Windows 解压版 PostgreSQL16.8-1 对应 PostGIS 3.5.2,Windows 解压版 PostgreSQL16.8-1与PostGIS 3.5.2安装,参考文章: https://blog.csdn.net/hefeng_aspnet/article/details/146334763 https://blog.csdn.net/hefeng_aspnet/article/details/146338962 https://blog.csdn.net/hefeng_aspnet/article/details/146339729 对应PostgreSQL16.8-1解压版地址:https://download.csdn.net/download/hefeng_aspnet/90492835

2025-03-18

Windows 解压版 PostgreSQL16.8-1

Windows 解压版 PostgreSQL16.8-1,参考文章: https://blog.csdn.net/hefeng_aspnet/article/details/146334763 https://blog.csdn.net/hefeng_aspnet/article/details/146338962 https://blog.csdn.net/hefeng_aspnet/article/details/146339729 对应PostGIS解压版地址:https://download.csdn.net/download/hefeng_aspnet/90492842

2025-03-18

deepseek java sdk deepseek4j-1.4.3

deepseek java sdk deepseek4j-1.4.3,包含源码及deepseek4j-1.4.3-示例-0.0.1-SNAPSHOT.jar包。

2025-03-07

deepseek java sdk deepseek4j-1.3.2

deepseek java sdk deepseek4j-1.3.2,包含源码

2025-03-07

使用 PHP Deepseek 实现问答 ask-deepseek

使用 PHP Deepseek 实现问答 ask-deepseek,本地运行 deepseek 可选,ollama 运行 deepseek-r1:1.5b

2025-03-06

PHP API 客户端,可让您与 deepseek API 进行交互 deepseek-php-client-2.0.3

PHP API 客户端,可让您与 deepseek API 进行交互 deepseek-php-client-2.0.3,特点如下: 无缝 API 集成:DeepSeek 的 AI 功能的 PHP 优先接口。 流畅的构建器模式:可链接的方法,用于直观的请求构建。 企业就绪:符合 PSR-18 的 HTTP 客户端集成。 模型灵活性:支持多种 DeepSeek 模型(Coder、Chat 等)。 流式传输就绪:内置对实时响应处理的支持。 许多 Http 客户端:易于使用Guzzle http client(默认),或symfony http client。 框架友好:可用 Laravel 和 Symfony 包。

2025-03-06

python 强大的混合专家 (MoE) 语言模型 DeepSeek-V3

python 强大的混合专家 (MoE) 语言模型 DeepSeek-V3,DeepSeek-V3,这是一个强大的混合专家 (MoE) 语言模型,总共有 671B 个参数,每个 token 激活 37B。为了实现高效的推理和经济高效的训练,DeepSeek-V3 采用了多头潜在注意力 (MLA) 和 DeepSeekMoE 架构,这些架构在 DeepSeek-V2 中得到了彻底的验证。此外,DeepSeek-V3 开创了一种无辅助损失的负载平衡策略,并设置了多 token 预测训练目标以获得更强大的性能。在 14.8 万亿个多样化和高质量的 token 上对 DeepSeek-V3 进行了预训练,然后进行监督微调和强化学习阶段,以充分利用其功能。综合评估表明,DeepSeek-V3 优于其他开源模型,并实现了与领先的闭源模型相当的性能。尽管性能出色,但 DeepSeek-V3 仅需要 2.788M H800 GPU 小时即可完成完整训练。此外,它的训练过程非常稳定。在整个训练过程中,没有遇到任何无法恢复的损失峰值或执行任何回滚。

2025-03-06

.NET 9.0 中 DeepSeek 模型入门示例

.NET 9.0 中 DeepSeek 模型入门示例,得益于 Microsoft.Extensions.AI 库,构建利用新 DeepSeek R1 模型的应用程序变得非常简单。 事实上,使用 MEAI 可以直接使用任何模型,无论它托管在 GitHub Models、Azure AI Foundry 中,还是在 Ollama 中本地运行。 这就是这个示例代码的全部内容 - 使用 MEAI 构建一个快速的 .NET 控制台来访问 DeepSeek R1 模型。

2025-03-06

该项目是一个轻量级 AI 代理,利用 Deepseek LLM 在本地运行并与 Spring Boot 集成

该项目是一个轻量级 AI 代理,利用 Deepseek LLM 在本地运行并与 Spring Boot 集成,将DeepSeek LLM 与 Spring Boot集成,从而实现实时 AI 响应,而无需依赖昂贵的基于云的 API。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/146062440

2025-03-06

使用纯 C++ 对 DeepSeek 系列大型语言模型进行 CPU 推理

使用纯 C++ 对 DeepSeek 系列大型语言模型进行 CPU 推理,这是基于Yet Another Language Model用 C++ 编写的 DeepSeek 系列大型语言模型的仅限 CPU 的推理实现。

2025-03-06

deepseek java sdk deepseek4j-1.4.5

deepseek java sdk deepseek4j-1.4.5,包含源码及deepseek4j-1.4.5-示例-0.0.1-SNAPSHOT.jar包。

2025-03-06

DeepSeek API 的 Python 客户端

DeepSeek API 的 Python 客户端,一个功能丰富的 Python 客户端,用于与 DeepSeek 强大的语言模型进行交互,支持同步和异步操作。

2025-03-06

C++ 基础知识了解、学习及源代码案例分享

C++ 基础知识了解、学习及源代码案例分享,掌握默认构造函数、构造函数重载、默认析构函数、析构函数重载、复制构造函数重载、赋值构造函数重载,掌握主要运算符+、-、*、/、前后置++、+= 等重载,学会 new/delete 函数重载,对比以下两种实现区别:当 new/delete被声明为私有函数时,类只能被实例化为栈对象,而不能实例化在堆内存。掌握继承、STL 六大组件等。

2025-03-05

C语言比较全面的经典源代码示例包含220个例子

C语言比较全面的经典源代码示例包含220个例子,包含: 002.运行多个源文件 011.模拟ATM(自动柜员机)界面 023.指向数组的指针 034.用“结构”统计学生成绩 044.冒泡排序 052.背包问题 054.链表操作(1) 064.哈夫曼编码 067.求解最优交通路径 074.K阶斐波那契序列 086.爱因斯坦的数学题 095.奇数平方的有趣性质 103.兔子产子(菲波那契数列) 108.递归整数四则运算 113.实矩阵乘法运算 115.n阶方阵求逆 122.绘制圆弧 128.金刚石图案 136.绘制正多边形 138.正方形螺旋拼块图案 144.绘制布朗运动曲线 147.VGA256色模式编程 152.利用图形页实现动画 155.读取DOS系统中的国家信息 165.获取BIOS设备列表 167.备份恢复硬盘分区表 168.设计口令程序 170.水果拼盘 173.求解符号方程 181.求解三角方程 184.奇数方差 185.统计选票 190.统计最高成绩 195.括号匹配 207.商人过河游戏 216.五子棋游戏 219.图书管理系统 220.进销存管理系统 等示例具体看源码

2025-03-05

编写实现基于《汇编语言》的300个汇编程序例程

编写实现基于《汇编语言》的300个汇编程序例程,基于《汇编语言》第三版

2025-03-05

2022年蓝桥杯省赛真各组题(c c++ java python)

2022年蓝桥杯省赛真各组题(c c++ java python)

2025-03-05

springmvc框架模板(含例子,可以用作计算机毕业设计开发) springmvc源代码

springmvc框架模板(含例子,可以用作计算机毕业设计开发) springmvc源代码

2025-03-05

软件设计师 (软考中级),真题及解析(2020年-2023年上半年)

软件设计师 (软考中级),真题及解析(2020年-2023年上半年)

2025-03-05

机器人算法的 Python 示例代码

机器人算法的 Python 示例代码,包含: 扩展卡尔曼滤波器定位 粒子滤波器定位 直方图滤波器定位 高斯网格图 射线投射网格图 激光雷达至网格地图 k-均值对象聚类 矩形接头 迭代最近点 (ICP) 匹配 FastSLAM 1.0 Dijkstra 算法 A* 算法 D*算法 D* Lite 算法 位场算法 基于网格的覆盖路径规划 偏极采样 车道采样 回程时间* RRT* 和 reeds-shepp 路径 LQR-RRT* 等

2025-03-05

将大学阶段的实训内容,按照专业课程设计(包括上机实验、课程设计、下学年的毕业设计等)、竞赛项目、科创项目、小型编程项目这四个门类进行整理汇总

将大学阶段的实训内容,按照专业课程设计(包括上机实验、课程设计、下学年的毕业设计等)、竞赛项目、科创项目、小型编程项目这四个门类进行整理汇总

2025-03-05

用于快速工程的指南、论文、讲座、笔记本和资源 Prompt-Engineering

用于快速工程的指南、论文、讲座、笔记本和资源 Prompt-Engineering,提示工程是一门相对较新的学科,用于开发和优化提示,以便有效地将语言模型 (LM) 用于各种应用和研究主题。提示工程技能有助于更好地理解大型语言模型 (LLM) 的功能和局限性。研究人员使用提示工程来提高 LLM 在各种常见和复杂任务(例如问答和算术推理)上的能力。开发人员使用提示工程来设计与 LLM 和其他工具交互的强大而有效的提示技术。

2025-03-05

带有 Multisim 10 示例的基本电子电路

带有 Multisim 10 示例的基本电子电路,时下非常流行的Electronic Workbench新版Multisim软件(v10)准备了135个基本电子电路,特别是在演示中,有些电路对于解决相当有帮助,还有所有电路的具体点测量工具,通过双击信号、频率等可以在仿真环境中观察到的信息。

2025-03-05

OpenCV C++ 示例

OpenCV:C++ 示例 OpenCV-Examples,包含如: 图像操作 在红色通道上应用高斯模糊的项目 追踪不同颜色物体的轨迹 使用网络摄像头进行人脸检测(基础版) 利用颜色检测的隐形斗篷 在特定间隔之间剪切视频

2025-03-05

面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.1

面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.1 支持本地模型 改进流式返回处理 改进示例代码 添加 ASP.NET Core 包 支持.net版本:.net8

2025-03-05

面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.4

面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.4,请自前往官方网站,注册并申请DeepSeek的ApiKey 支持的 .NET 版本:.NET8

2025-03-05

使用 SignalR 在 .NET Core 8 最小 API 中构建实时通知

使用 SignalR 在 .NET Core 8 最小 API 中构建实时通知,构建实时应用程序已成为现代 Web 开发中必不可少的部分,尤其是对于通知、聊天系统和实时更新等功能。SignalR 是 ASP.NET 的一个强大库,可实现服务器端代码和客户端 Web 应用程序之间的无缝实时通信。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145990801

2025-03-03

C# 简单数字时钟源代码

C# 简单数字时钟源代码,参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145990289

2025-03-03

C++与C#(仅支持YUV2编码格式下截图)EasyPlayer RTSP是一款精炼、高效、稳定的RTSP流媒体播放器

C++与C#(仅支持YUV2编码格式下截图)EasyPlayer RTSP是一款精炼、高效、稳定的RTSP流媒体播放器,源码包内包含C#与C++源码及发布文件

2025-03-03

.NetCore WPF Rtsp视频流转Websocket实现Web实时查看摄像头 C#通过FFmpeg播放Rtsp流

.NetCore WPF,Rtsp视频流转Websocket实现Web实时查看摄像头,C#通过FFmpeg播放Rtsp流,.NET Framework 4.6.1。

2025-03-03

适用于 .NET Core 3.0-.NET 5.0 的 C# RTSP 客户端 视频截图

适用于 .NET Core 3.0-.NET 5.0 的 C# RTSP 客户端 RtspClientSharpCore,视频截图。

2025-03-03

在 .net 9 中如何重新添加Swagger或改用Scalar

Swagger 在 .net 9 中被删除 此代码向您展示如何重新添加它或改用Scalar。 随着.NET 9的发布,ASP.NET Core 团队决定删除内置的 Swagger 支持(Swashbuckle)。Scalar是一个开源 API 平台,它将 API 文档和测试提升到了一个新的水平。它提供了现代功能、直观的用户体验和时尚的界面。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145754267

2025-02-20

在 .NET 9.0 Web API 中实现 Scalar 接口文档及JWT集成

在 .NET 9.0 Web API 中实现 Scalar 接口文档及JWT集成。目前有许多 Swagger 的替代方案,但在本示例中,将讨论在 API 项目中实现 Scalar。继 Swagger 之后,Scalar 在开发人员中越来越受欢迎。 参考文章地址:https://blog.csdn.net/hefeng_aspnet/article/details/145752347

2025-02-20

在 ASP .NET Core 9.0 中使用 Scalar 创建漂亮的 API 文档

在 ASP .NET Core 9.0 中使用 Scalar 创建漂亮的 API 文档 。Scalar 是一款可帮助我们为 API 创建精美文档的工具。与感觉有些过时的默认 Swagger 文档不同,Scalar 为 API 文档提供了全新而现代的 UI。其简洁的设计让开发人员可以轻松找到测试所需的 API。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145751911

2025-02-20

.NET 9 彻底改变了 API 的文档:从 Swashbuckle 到 Scalar

.NET 9 彻底改变了 API 的文档:从 Swashbuckle 到 Scalar。API 文档是现代软件开发的支柱。随着 .NET 9 从 Swashbuckle 转向 Microsoft.AspNetCore.OpenApi,开发人员需要新的策略来保持高效。本文探讨了这些变化,并介绍了 API 文档的变革者 Scalar。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145731675

2025-02-19

jdk-8u431-windows-x64

java jdk-8u431-windows-x64.exe 安装版(非解压缩版,解压缩版:https://download.csdn.net/download/hefeng_aspnet/90295429),如果仅仅想运行 Java 程序(客户端),只需要安装独立的 JRE;如果想进行 Java 编程(开发人员),需要安装 JDK,JDK 包里也内置有 JRE,既能开发 Java 也能运行 Java 程序。

2025-01-21

java jdk-8u431-windows-x64

java jdk-8u431-windows-x64.zip 解压缩版(非安装版,安装版:https://download.csdn.net/download/hefeng_aspnet/90295463),如果仅仅想运行 Java 程序(客户端),只需要安装独立的 JRE;如果想进行 Java 编程(开发人员),需要安装 JDK,JDK 包里也内置有 JRE,既能开发 Java 也能运行 Java 程序。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145286066

2025-01-21

ASP.NET Core 6 MVC 文件上传

完整源代码演示了如何在 C# .NET 6 MVC 中执行文件上传,IFormFile 接口是 Microsoft.AspNetCore.Http 命名空间的一部分,可用于在 ASP.NET Core 中上传一个或多个文件。 ASP.NET Core 支持使用缓冲模型绑定上传较小文件的文件,并使用无缓冲流上传较大文件的文件。 参考文章:https://blog.csdn.net/hefeng_aspnet/article/details/145283800

2025-01-21

Asp.net core大文件下载 Asp.net-core-large-file-download

Asp.net core大文件下载 Asp.net-core-large-file-download,它将从多个文件动态创建 zip 文件,而无需使用系统内存,因此这可以解决下载非常大的文件时内存不足的问题。

2025-01-21

Asp.net Core 6.0 中间件压缩静态文件发送到浏览器,而无需按需压缩

Asp.net Core 6.0 中间件压缩静态文件发送到浏览器,而无需按需压缩,还支持在浏览器指示支持时发送更高级的图像格式。

2025-01-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除