动态规划经典题目:不同路径1、2、最小路径和

30 篇文章 2 订阅

不同路径1、2、最小路径和

一、62. 不同路径

1.1 解法一:递归(时间超限制)

    public int uniquePaths(int m, int n) {
        return solve1(m-1, n-1);
    }

    private int solve1(int x, int y) {
        if (x==0 || y==0) return 1;
        return solve1(x, y-1) + solve1(x-1, y);
    }

1.2 解法二:递归+记忆化搜索

    public int uniquePaths(int m, int n) {
        int[][] a = new int[m][n];
        return solve2(m-1, n-1, a);
    }
    // 递归+记忆化搜索
    private int solve2(int x, int y, int[][] a) {
        if (x==0 || y==0) return 1;
        if (a[x][y]!=0) return a[x][y];
        a[x][y] = solve2(x-1, y, a) + solve2(x, y-1, a);
        return a[x][y];
    }

1.3 解法三:DP,动态递推

(1)DP:使用二维数组存储中间状态
    public int uniquePaths(int m, int n) {
        // 动态规划:使用二维数组存储中间状态
        int[][] dp = new int[m][n];
        for (int i=0; i<m; i++) {
            for (int j=0; j<n; j++) {
                if (i==0 || j==0) dp[i][j] = 1;
                else dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
(2)DP:使用一维数组存储中间状态
    public int uniquePaths(int m, int n) {
        // 动态规划: 使用一维数组存储中间状态
        int[] dp = new int[n];
        Arrays.fill(dp, 1);
        for (int i=1; i<m; i++) {
            for (int j=1; j<n; j++) {
                dp[j] = dp[j-1] + dp[j];
            }
        }
        return dp[n-1];
    }

二、63. 不同路径 II

2.1 方案一:递归(时间超限制)

    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 方案一:递归: 时间超限制
        int m = obstacleGrid.length, n=obstacleGrid[0].length;
        return solve1(m-1, n-1, obstacleGrid);
    }

    // 方案一:递归的解法
    private int solve1(int x, int y, int[][] obstacleGrid) {
        if (obstacleGrid[x][y]==1) return 0;
        if (x==0 && y==0) return 1;
        if (x==0) return solve1(x, y-1, obstacleGrid);
        if (y==0) return solve1(x-1, y, obstacleGrid);
        return solve1(x-1, y, obstacleGrid) + solve1(x, y-1, obstacleGrid);
    }

2.2 方案二:递归+记忆化搜索

    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 方案二: 递归 + 记忆化搜索
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        int[][] a = new int[m][n];
        for (int i=0; i<m; i++) {
            a[i] = new int[n];
            Arrays.fill(a[i], -1);
        }
        return solve2(m-1, n-1, obstacleGrid, a);
    }

    // 方案一:递归的解法
    private int solve1(int x, int y, int[][] obstacleGrid) {
        if (obstacleGrid[x][y]==1) return 0;
        if (x==0 && y==0) return 1;
        if (x==0) return solve1(x, y-1, obstacleGrid);
        if (y==0) return solve1(x-1, y, obstacleGrid);
        return solve1(x-1, y, obstacleGrid) + solve1(x, y-1, obstacleGrid);
    }

2.3 方案三:DP:动态递推

(1)动态递推:使用二维数组
		public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 方案三: DP动态递推:使用二维数组
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        for (int i=0; i<m; i++) {
            for (int j=0; j<n; j++) {
                if (obstacleGrid[i][j]==1) dp[i][j] = 0;
                else if (i==0 && j==0) dp[i][j] = 1;
                else if (i==0) dp[i][j] = dp[i][j-1];
                else if (j==0) dp[i][j] = dp[i-1][j];
                else dp[i][j] = dp[i-1][j] + dp[i][j-1]; 
            }
        }
        return dp[m-1][n-1];
    }
(2)动态递推:使用一维数组
		public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 方案四: DP动态递推:使用一维数组
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        int[] dp = new int[n];
        for (int i=0; i<n; i++) {
            if (obstacleGrid[0][i]==1) break;
            else dp[i]=1;
        }
        for (int i=1; i<m; i++) {
            for (int j=0; j<n; j++) {
                if (obstacleGrid[i][j]==1) dp[j]=0;
                else if (j>0) {
                    dp[j] = dp[j] + dp[j-1];
                }
            }
        }
        return dp[n-1];
    }

三、64. 最小路径和

3.1 方案一:递归:时间超限制

    public int minPathSum(int[][] grid) {
        // 方案一:递归: 时间超限制
        int m = grid.length, n = grid[0].length;
        return solve1(m-1, n-1, grid);
    }
    // 解法一: 递归
    private int solve1(int x, int y, int[][] grid) {
        if (x==0 && y==0) return grid[x][y];
        else if (x==0) return grid[x][y] + solve1(x, y-1, grid);
        else if (y==0) return grid[x][y] + solve1(x-1, y, grid);
        else return grid[x][y] + Math.min(solve1(x, y-1, grid), solve1(x-1, y, grid));
    }

3.2 方案二:递归+记忆化搜索

    public int minPathSum(int[][] grid) {
        // 方案二:递归+记忆化搜索
        int m = grid.length, n = grid[0].length;
        int[][] a = new int[m][n];
        for (int i=0; i<m; i++) {
            a[i] = new int[n];
            Arrays.fill(a[i], -1);
        }
        return solve2(m-1, n-1, grid, a);
    }
    // 解法二: 递归+记忆化搜索
    private int solve2(int x, int y, int[][] grid, int[][] a) {
        if (a[x][y]!=-1) return a[x][y];
        if (x==0 && y==0) {
            a[x][y] = grid[x][y];
        }else if (x==0) {
            a[x][y] = grid[x][y] + solve2(x, y-1, grid, a);
        }else if (y==0) {
            a[x][y] = grid[x][y] + solve2(x-1, y, grid, a);
        }else {
            a[x][y] = grid[x][y] + Math.min(solve2(x, y-1, grid, a), solve2(x-1, y, grid, a));
        }
        return a[x][y];
    }

3.3 方案三:DP:动态规划

(1)动态递推:使用二维数组
    public int minPathSum(int[][] grid) {
        // 方案三: 动态规划:使用二维数组
        int m = grid.length, n = grid[0].length;
        int[][] dp = new int[m][n];
        for (int i=0; i<m; i++) {
            for (int j=0; j<n; j++) {
                if (i==0 && j==0) dp[i][j] = grid[i][j];
                else if (i==0) dp[i][j] = grid[i][j] + dp[i][j-1];
                else if (j==0) dp[i][j] = grid[i][j] + dp[i-1][j];
                else dp[i][j] = grid[i][j] + Math.min(dp[i-1][j] , dp[i][j-1]);
            }
        }
        return dp[m-1][n-1];
    }
(2)动态递推:使用一维数组
    public int minPathSum(int[][] grid) {
        // 方案四: 动态规划:使用一维数组
        int m = grid.length, n = grid[0].length;
        int[] dp = new int[n];
        dp[0] = grid[0][0];
        for (int i=1; i<n; i++) {
            dp[i]=grid[0][i] + dp[i-1];
        }
        for (int i=1; i<m; i++) {
            for (int j=0; j<n; j++) {
                if (j==0) dp[j] = grid[i][j] + dp[j];
                else dp[j] = grid[i][j] + Math.min(dp[j], dp[j-1]);
            }
        }
        return dp[n-1];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值