python 线程池threadpool(使用篇)

最近在做一个视频设备管理的项目,设备包括(摄像机,DVR,NVR等),包括设备信息补全,设备状态推送,设备流地址推送等,如果同时导入的设备数量较多,如果使用单线程进行设备检测,那么由于设备数量较多,会带来较大的延时,因此考虑多线程处理此问题。

可以使用python语言自己实现线程池,或者可以使用第三方包threadpool线程池包,本主题主要介绍threadpool的使用以及其里面的具体实现。

1、安装

使用安装: pip installthreadpool

2、使用

    (1)引入threadpool模块
    (2)定义线程函数
    (3)创建线程 池threadpool.ThreadPool()
    (4)创建需要线程池处理的任务即threadpool.makeRequests()
    (5)将创建的多个任务put到线程池中,threadpool.putRequest
    (6)等到所有任务处理完毕theadpool.pool()
import threadpool
def ThreadFun(arg1,arg2):
    pass
def main():
    device_list=[object1,object2,object3......,objectn]#需要处理的设备个数
    task_pool=threadpool.ThreadPool(8)#8是线程池中线程的个数
    request_list=[]#存放任务列表
    #首先构造任务列表
    for device in device_list:
        request_list.append(threadpool.makeRequests(ThreadFun,[((device, ), {})]))
    #将每个任务放到线程池中,等待线程池中线程各自读取任务,然后进行处理,使用了map函数,不了解的可以去了解一下。
    map(task_pool.putRequest,request_list)
    #等待所有任务处理完成,则返回,如果没有处理完,则一直阻塞
    task_pool.poll()
if __name__=="__main__":
    main()

上面就是一个具体的线程池的使用流程
threadpool具体的定义如下:
class ThreadPool:
    """A thread pool, distributing work requests and collecting results.

    See the module docstring for more information.

    """
    def __init__(self, num_workers, q_size=0, resq_size=0, poll_timeout=5):
        pass
    def createWorkers(self, num_workers, poll_timeout=5):
	    pass
    def dismissWorkers(self, num_workers, do_join=False):
	    pass
    def joinAllDismissedWorkers(self):
	    pass
    def putRequest(self, request, block=True, timeout=None):
	    pass
    def poll(self, block=False):
	    pass
    def wait(self):
    	pass



下一节会详细介绍上面的整个流程以及每个函数:python 线程池threadpool(实现篇)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值