//ans[i][j]表示第i个结点以下共j个用户观看时最大的赚钱量
//(仍然没有想到)ans[u][i]=max{ans[u][i-j]+ans[v][j]-w}
//具体解释:
/*
ans[i][j][k]表示第i个结点以下前k个子结点中有j个用户观看时最大的赚钱量
ye[v]为v及以下叶节点数量
则对于边(u,v,w),ans[i][j][k]=max{ans[i][j-p][k-1]+ans[v][p][ye[v]]-w}(0<=p<=j,1<=j<=Σ(t属于前k个子结点的编号)ye[t])
省去k一维,则需要j从大到小循环:
ans[i][j]=max{ans[i][j-p]+ans[v][p]-w}(0<=p<=j,1<=j<=Σ(t属于前k个子结点)ye[t])
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Edge
{
int to,dis,next;
}edge[5000];
int node[5000],num_edge;
int ans[3010][3010],n,m;
//int a[5000];
int ye[5000];//点i及以下的叶节点数量为ye[i]
void make(int x,int y,int d)
{
edge[++num_edge].to=y;
edge[num_edge].dis=d
洛谷 P1273 有线电视网
最新推荐文章于 2021-05-03 20:57:46 发布
这篇博客深入探讨了洛谷P1273问题的解决方案,主要利用动态规划和背包策略进行求解。通过详细解析算法思路,帮助读者理解如何构建有线电视网的最优配置。
摘要由CSDN通过智能技术生成