f[i][j]表示给[i,n]区间的卡牌j次机会的概率。单独考虑每一张牌的情况,而不是单独考虑每一轮的情况
f[0][r]=1;
f[i][j]=f[i-1][j]*sig(i-1,j)+f[i-1][j+1]*(1-sig(i-1,j+1))
其中sig[i][j]表示第i张牌,j次机会,都没有发出去的概率。
注意数组清0
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define inf 1e9
#define eps 1e-10
#define md
#define N 500
using namespace std;
long double p[N],f[N][N],g[N][N],a[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("data.in","r",stdin); freopen("data.out","w",stdout);
#endif
int tt;
scanf("%d",&tt);
while (tt--)
{
int n,R;
scanf("%d%d",&n,&R);
for (int i=1;i<=n;i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
p[i]=x; a[i]=y;
}
memset(f,0,sizeof(f)); memset(g,0,sizeof(g));
for (int i=1;i<=n;i++)
{
g[i][0]=1; p[i]=1.0-p[i];
for (int j=1;j<=R;j++)
g[i][j]=g[i][j-1]*p[i];
}
f[0][R]=1; long double ans=0;
g[0][R]=1;
for (int i=1;i<=n;i++)
{
for (int j=1;j<=R;j++)
{
f[i][j]=f[i-1][j+1]*(1-g[i-1][j+1])+f[i-1][j]*g[i-1][j];
//printf("%.3lf ",f[i][j]);
ans=ans+f[i][j]*(1-g[i][j])*a[i];
} //printf("\n");
}
printf("%.10lf\n",(double)ans);
}
return 0;
}