S(n,k)=S(n/p,k/p-1)*S(n%p,p-1)+C(n/p,k/p)*S(n%p,k%p)
意思是根据lucas定理对于i/p<k/p的所有i/p,都有C(n,i)=C(n/p,i/p)*C(n%p,i%p) 对于i%p=0 to p-1 后面一项就是S(n%p,p-1),而前面是一个规模变小的子问题。
忘记处理sum[0][?]了
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define inf 1e9
#define eps 1e-8
#define md
#define N 2500
using namespace std;
const int p=2333;
int C [ N ][ N ], sum [ N ][ N ], mi [ N ];int lucas(ll n,ll m)
{
if (m==0) return 1;
return lucas(n/p,m/p)*C[n%p][m%p]%p;
}
int cal(ll n,ll k)
{
if (k<0) return 0;
if (n<p) return sum[n][k];
ll t=k/p,s=k%p;
return (cal(n/p,t-1)*sum[n%p][p-1]+lucas(n/p,t)*sum[n%p][s])%p;
}
int main()
{
for (int i=0;i<p;i++)
{
C[i][0]=1;
for (int j=1;j<=i;j++)
{
C[i][j]=C[i-1][j-1]+C[i-1][j];
if (C[i][j]>=p) C[i][j]-=p;
}
sum[i][0]=1;
for (int j=1;j<p;j++)
{
sum[i][j]=sum[i][j-1]+C[i][j];
if (sum[i][j]>=p) sum[i][j]-=p;
}
}
int tt; ll n,k;
scanf("%d",&tt);
while (tt--)
{
scanf("%lld%lld",&n,&k);
printf("%d\n",cal(n,k));
}
return 0;
}
//p=2333