Manipulating Federated Recommender Systems: Poisoning with Synthetic Users and Its Countermeasures

请概述每个章节的主要内容

  • 介绍:本文研究了联邦推荐系统(FedRecs)面临的数据投毒和梯度投毒攻击威胁,并提出了相应的防御方法。
  • 背景与相关工作:介绍了联邦推荐系统、攻击联邦推荐系统的方法以及现有的防御方法。
  • 联邦推荐框架:描述了联邦推荐框架的基本原理和主要参数。
  • 攻击方法:提出了一种使用合成恶意用户进行投毒攻击的方法(PSMU)。
  • 防御方法:提出了一种分层梯度剪切与稀疏化更新方法(HiCS)来防御梯度投毒攻击。
  • 实验:通过在两个真实数据集上进行大量实验,展示了所提出的攻击和防御方法的有效性。

论文试图解决什么问题?

该论文试图解决的问题是在联邦推荐系统(FedRecs)中实施有效的数据投毒攻击(即使没有先验知识),以及针对这种攻击提出一种新颖的防御方法(HiCS)。论文首先提出了一种名为PSMU(Poisoning with Synthetic Malicious Users)的有效投毒攻击,该攻击可以在较少的恶意用户和较少的训练周期内攻击FedRecs,从而揭示了FedRecs对梯度投毒攻击的脆弱性。然后,论文提出了一种名为HiCS(Hierarchical Gradient Clipping and Sparsification Update)的新颖防御方法,用于抵御FedRecs中的梯度投毒攻击。通过在两个真实世界推荐数据集上进行大量实验,论文展示了PSMU攻击和HiCS防御方法的有效性和优越性。

这篇文章的主要研究方法

这篇文章的主要研究方法包括以下几点:

  • 提出了一种名为PSMU(Poisoning with Synthetic Malicious Users)的攻击方法,用于攻击联邦推荐系统(FedRecs),该方法无需先验知识且使用较少的恶意用户和较少的训练周期。
  • 提出了一种名为HiCS(Hierarchical Gradient Clipping and Sparsification Update)的防御方法,用于抵御FedRecs中的梯度投毒攻击。
  • 通过大量实验,将PSMU和HiCS与现有的攻击和防御方法进行了比较,证明了这两种方法的有效性和优越性。
    总之,这篇文章主要研究了如何攻击和防御联邦推荐系统(FedRecs),提出了一种新颖的攻击方法PSMU和一种有效的防御方法HiCS。

论文中的实验是如何设计的,详细描述各实验方法并概括总结:

实验设计包括以下几个部分:

  • 数据集:使用了两个流行的联邦推荐数据集,MovieLens-1M (ML) 和 Amazon Digital Music(AZ),进行评估。
  • 评估协议:首先在没有攻击的情况下训练联邦推荐系统(FedRecs)数个周期,然后在特定周期发起攻击。评估防御方法时,测试的防御方法在训练开始时就会被激活,因为系统无法预测攻击何时发生。
  • 基线方法:选择了一些现有的攻击和防御方法作为基线进行比较。
  • 参数设置:对于Fed-NCF和Fed-LightGCN,用户和项目嵌入的维数为32。采用了3个具有64、32和16维度的前馈层来处理连接的用户和项目嵌入。LightGCN的传播层数为1。使用Adam优化器,学习率为0.001。攻击在第8个全局周期开始。
  • 实验目标:
    • RQ1. 攻击方法(PSMU)的有效性如何与梯度投毒攻击基线方法进行比较?
    • RQ2.提出的防御方法(HiCS)能否有效地抵御梯度投毒攻击?
    • RQ3. 我们的防御方法(HiCS)与防御基线方法的有效性如何进行比较?
    • RQ4.对于所提出的攻击和防御方法,恶意用户比例的影响分析。

实验方法总结:

  • PSMU(使用合成恶意用户进行投毒):PSMU的目标是最大限度地提高目标项目V的曝光率。为实现这一目标,PSMU通过上传污染的梯度∇Θ和∇V来优化局部推荐损失。
  • HiCS(分层梯度剪截与稀疏化更新防御):HiCS采用剪截和稀疏化更新方法,以防止恶意用户上传的污染梯度影响全局模型。HiCS首先对所有上传的梯度进行剪截,然后对剪截后的梯度进行稀疏化更新。

实验总结:

  • 通过与现有的攻击和防御方法进行比较,证明了PSMU和HiCS的优越性。
  • 在不使用任何先验知识且具有极少数恶意用户的情况下,PSMU成功地揭示了FedRecs对梯度投毒攻击的脆弱性。
  • 提出的HiCS防御方法能够成功地抵御。

这篇论文到底有什么贡献?

  • 提出了一种有效的投毒攻击方法(PSMU),可以在不需要先验知识的情况下,使用较少的恶意用户和较少的训练周期攻击联邦推荐系统(FedRecs),从而揭示了FedRecs对梯度投毒攻击的脆弱性。
  • 首次探讨了如何在FedRecs中防御梯度投毒攻击,并提出了一种名为HiCS的新防御方法。
  • 通过在两个实际的推荐数据集上进行大量实验,展示了攻击和防御方法的有效性。与现有的攻击和防御基线进行比较,证明了PSMU和HiCS的优越性。
    总之,这篇论文通过提出一种有效的投毒攻击方法(PSMU)和一种新防御方法(HiCS),揭示了联邦推荐系统(FedRecs)在面对梯度投毒攻击时的脆弱性,并提供了一种解决方案来应对这种威胁。

这篇文章要验证一个什么科学假设?

这篇文章要验证的科学假设是:通过使用合成恶意用户(PSMU)进行梯度投毒攻击,可以在联邦推荐系统(FedRecs)中有效地提高目标项目的曝光率,同时保持推荐性能。文章还提出了一种名为HiCS的防御方法,旨在抵御FedRecs中的梯度投毒攻击。

作者的研究思路是什么,是怎么样论述和解决的?

作者的研究思路主要包括以下几个方面:

  • 提出一种新的投毒攻击方法(PSMU),通过合成恶意用户上传投毒梯度,以有效地操纵联邦推荐系统(FedRecs)中目标项目的排名和暴露率,无需依赖任何先验知识。
  • 设计了一种分层梯度剪辑与稀疏更新(HiCS)方法来防御FedRecs中的投毒攻击。该方法通过剪辑和稀疏更新来提高FedRecs的鲁棒性。
  • 通过大量实验,验证了所提出的攻击和防御方法的有效性和优越性。实验涉及两种广泛使用的FedRecs(Fed-NCF和Fed-LightGCN)以及两个真实世界的推荐数据集。

作者通过以下步骤论述和解决问题:

  • 在第3.3节中,阐述了梯度投毒攻击和防御的方法,提出了PSMU攻击方法,以及HiCS防御方法。
  • 在第4.1节中,详细描述了PSMU攻击方法,包括其目标、实现方法和优化目标。
  • 在第4.2节中,详细描述了HiCS防御方法,包括其原理、梯度剪辑和稀疏更新策略。
  • 在第5节中,通过实验验证了PSMU攻击方法的有效性(RQ1)、HiCS防御方法对抗投毒攻击的有效性(RQ2)、HiCS与防御基线方法的比较(RQ3),以及恶意用户比例对攻击和防御的影响(RQ4)。
    总之,作者通过提出一种新的投毒攻击方法(PSMU),揭示了FedRecs的脆弱性,并设计了一种有效的防御方法(HiCS),以保护FedRecs免受投毒攻击的影响。

什么是合成恶意用户上传投毒梯度?

恶意用户上传投毒梯度(Poisoning with Synthetic Malicious Users,简称PSMU)是一种梯度投毒攻击方法,通过生成和上传污染的梯度来提高目标项目在联邦推荐系统(Federated Recommender Systems, FedRecs)中的曝光率。PSMU的主要思想是利用随机构建的合成用户与真实用户之间的相似性,如果目标项目在合成用户中具有高曝光率,那么它们有很高的可能性被联邦推荐系统推荐给真实用户。PSMU通过以下方式工作:

  • 恶意用户随机选择一组项目作为交互项目,并基于随机选择的正项目学习合成用户嵌入。
  • 优化目标项目的排名,使其在合成用户中具有较高的曝光率。
  • 为了进一步提高目标项目的竞争力,将目标项目的替代品添加到竞争集中,替代品与目标项目具有较高的嵌入相似性和相对较高的偏好分数。
    PSMU旨在在不暴露恶意用户的情况下,提高目标项目在FedRecs中的曝光率,从而达到操纵推荐结果的目的。

这篇文章使用了哪些研究方法?具体的研究过程是什么?

研究方法:

  • 提出一种新颖的攻击方法:通过使用合成恶意用户(PSMU)进行感染。
  • 提出一种有效的防御方法:分层梯度剪辑与稀疏化更新(HiCS)。

研究过程:

  • 提出PSMU攻击方法,通过优化损失函数来最大化目标项目的曝光率。
  • 提出HiCS防御方法,通过梯度剪辑与稀疏化更新来抵御毒性梯度攻击。
  • 在两个真实世界推荐数据集(MovieLens-1M 和 Amazon DigitalMusic)上进行广泛实验,验证所提出的攻击和防御方法的有效性和优越性。

这个领域目前存在什么问题?以及这篇文章需要解决什么问题?

这个领域存在的问题:

  • 联邦推荐系统(FedRecs)面临的挑战是如何有效地抵御梯度投毒攻击。现有的梯度投毒攻击要么基于不切实际的先验知识,要么性能不佳。
  • 已有的防御方法无法有效地应对FedRecs中的梯度投毒攻击,因为它们要么基于不切实际的先验知识,要么性能不佳。

这篇文章需要解决的问题:

  • 提出一种不需要先验知识且能够在更少的恶意用户和更少的训练周期内实现有效攻击的联邦推荐系统投毒攻击方法(PSMU)。
  • 针对FedRecs中的梯度投毒攻击,提出一种新颖的防御方法(HiCS),以减少投毒攻击对目标项目的曝光率,同时尽量减少对推荐系统性能的副作用。

目前已经有的工作在解决该领域的问题上的不足之处?

在解决联邦推荐系统(FedRecs)中的梯度投毒攻击问题上,现有工作存在以下不足之处:

  • 现有的投毒攻击方法要么基于不现实的先验知识,要么性能不佳。这意味着现有攻击方法无法真实地揭示FedRecs面临的投毒攻击威胁。
  • 虽然已有研究强调了对梯度攻击的新防御机制的迫切需求,但目前尚无有效的防御解决方案。
  • 现有的防御方法主要侧重于联邦学习,而大多数联邦学习的防御方法无法直接应用于联邦推荐设置。因此,需要针对FedRecs开发新的防御方法。

所提出的模型主要由哪几个部分组成,分别缓解了什么问题?

所提出的模型主要由以下几个部分组成:

  • 基础联邦推荐器:Neural Collaborative Filtering (NCF) 和 LightGCN。
  • 梯度投毒攻击与防御:攻击目标是提高目标项目的曝光率,防御方法则是在中央服务器端防御恶意用户的攻击 。
  • PSMU:使用合成恶意用户进行投毒攻击。
  • HiCS:分层梯度剪接与稀疏化更新进行防御。

这些部分分别缓解了以下问题:

  • 基础联邦推荐器:实现了隐私保护的推荐系统训练 。
  • 梯度投毒攻击与防御:揭示了联邦推荐系统面临的梯度投毒攻击威胁,并提出了有效的防御方法。
  • PSMU:使用合成恶意用户实现了无需先验知识且具有较少恶意用户和较少训练周期的投毒攻击。
  • HiCS:提供了一种防御联邦推荐系统中梯度投毒攻击的有效方法。

模型在几个数据集上取得了SOTA的效果?

模型在以下两个数据集上取得了SOTA的效果:

  • MovieLens-1M(ML)
  • Amazon Digital Music(AZ)
  • 17
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值