归并排序(Merging sort)
原理:分治思想—如果一个数组有n个数据,则可以把这个数组看作n个有序的子序列,每个子序列的长度为1,然后两两归并,就能得到[n/2]个长度为2(或者1,落单的)的字序列,再不断地两两归并,直到得到一个长度为n的有序数组。
时间复杂度: O ( n log n ) {\rm{O}}(n\log n) O(nlogn)
递归的归并排序
import java.util.Arrays;
public class test {
public static void MergeSort2(int[] arr, int low, int high)
{
//使用递归的方式进行归并排序,所需要的空间复杂度是O(N+logN)
int mid = (low + high)/2;
if(low < high)
{
//递归地对左右两边进行排序
MergeSort2(arr, low, mid);
MergeSort2(arr, mid+1, high);
//合并
merge(arr, low, mid, high);
}
}
//merge函数实际上是将两个有序数组合并成一个有序数组
//因为数组有序,合并很简单,只要维护几个指针就可以了
private static void merge(int[] arr, int low, int mid, int high)
{
//temp数组用于暂存合并的结果
int[] temp = new int[high - low + 1];
//左半边的指针
int i = low;
//右半边的指针
int j = mid+1;
//合并后数组的指针
int k = 0;
//将记录由小到大地放进temp数组
for(; i <= mid && j <= high; k++)
{
if(arr[i] < arr[j])
temp[k] = arr[i++];
else
temp[k] = arr[j++];
}
//接下来两个while循环是为了将剩余的(比另一边多出来的个数)放到temp数组中
while(i <= mid)
temp[k++] = arr[i++];
while(j <= high)
temp[k++] = arr[j++];
//将temp数组中的元素写入到待排数组中
for(int l = 0; l < temp.length; l++)
arr[low + l] = temp[l];
}
public static void main(String[] args) {
int [] nums = {9, 1, 5, 8, 3, 7, 4, 6, 2};
MergeSort2(nums, 0, nums.length-1);
System.out.println(Arrays.toString(nums));
}
}
非递归的(迭代)归并排序
避免了递归方法时深度为 log 2 n {\log _2}n log2n空间,推荐非递归方法实现
import java.util.Arrays;
public class test {
public static void MergeSort2(int[] arr)
{
//使用非递归的方式来实现归并排序
int len = arr.length;
int k = 1;
while(k < len)
{
MergePass(arr, k, len);
k *= 2;
}
}
//MergePass方法负责将数组中的相邻的有k个元素的字序列进行归并
private static void MergePass(int[] arr, int k, int n)
{
int i = 0;
//从前往后,将2个长度为k的子序列合并为1个
//理解为i+2*k-1<n --> i < n-2*k+1
while(i + 2*k -1 < n)
{
merge(arr, i, i + k-1, i + 2*k - 1);
//注意i的更新步长
i += 2*k;
}
//这段代码保证了,将那些“落单的”长度不足两两merge的部分和前面merge起来。
//理解为i+k<n,也就是至少剩下k个数,这样merge函数左半部分长度保证为k,右半部分长度保证>=1
//如果剩下的数字个数小于k,不用管了,直接在原数组的最后即可
if(i + k - 1 + 1 < n)
{
merge(arr, i, i+k-1, n-1);
}
}
//merge函数实际上是将两个有序数组合并成一个有序数组
//一个是arr[low......mid],一个是arr[mid+1.....high]
//因为数组有序,合并很简单,只要维护几个指针就可以了
private static void merge(int[] arr, int low, int mid, int high)
{
//temp数组用于暂存合并的结果
int[] temp = new int[high - low + 1];
//左半边的指针
int i = low;
//右半边的指针
int j = mid+1;
//合并后数组的指针
int k = 0;
//将记录由小到大地放进temp数组,注意指针更新
for(; i <= mid && j <= high; k++)
{
if(arr[i] < arr[j])
temp[k] = arr[i++];
else
temp[k] = arr[j++];
}
//接下来两个while循环是为了将剩余的(比另一边多出来的个数)放到temp数组中
while(i <= mid)
temp[k++] = arr[i++];
while(j <= high)
temp[k++] = arr[j++];
//将temp数组中的元素写入到待排数组中
for(int p = 0; p < temp.length; p++)
arr[low + p] = temp[p];
}
public static void main(String[] args) {
int [] nums = {9, 1, 5, 8, 3, 7, 4, 6, 2};
MergeSort2(nums);
System.out.println(Arrays.toString(nums));
}
}