- 博客(11)
- 收藏
- 关注
原创 Leetcode 460 LFU Cache
首先定义了两个哈希表,第一个哈希表用于存储节点,帮助快速找出节点,第二个哈希表用于存储各个使用次数下都有那些节点。此题解法参考 https://developer.aliyun.com/article/854931。同时为了快速找出使用次数最少的节点定义了一个TreeSet。整体解法参考我的上一篇LRU Cache。
2025-02-27 22:45:56
237
原创 leetcode146 LRU缓存
本题中要求插入数据以及获取数据都需要* O(1)* 的平均时间复杂度运行,因此借用了哈希表和双向链表。双向链表用于维护一个链表来准确找出最近最少使用的节点,具体实现逻辑如下。其中哈希表用于快速定位节点。
2025-02-27 22:39:15
326
原创 Java 异常解决:Servlet.service() for servlet [dispatcherServlet] in context with path [] threw excep
`
2024-10-11 23:21:12
453
原创 (2024年)末二信管跨保CS | 厦大,川大,华南理工,西电杭,北邮,湖大,东北大学...
随着各个学校的保研率的提升,对于计算机专业来说想要通过保研前往好的985的难度正在逐年提升,这对于想要跨保的同学来说去一个比较好985难度也日益剧增,因此做好提前规划我认为是非常重要的。大家可以发现我在夏令营期间的情况是很惨淡的,这其中有部分可能是因为我本身是跨专业的原因,但是我个人认为今年形势如此惨淡更多是因为海王越来越多的原因。大家这个时候也不要灰心,可以先自己复习一下专业,熟悉一下自己的项目,打磨一下自己的简历。
2024-10-03 22:58:20
2184
原创 深搜记忆化 (P4017题解)
在深度优先搜索中有很多时候某个都是被我们反复遍历的,例如此题中DFS(3)相当于表示从3这个点出发到达某个顶级消费者的路径条数,但是在在我们假如使用朴素的DFS我们将会多次调用DFS(3),因此我们利用一个数组存储中间点的结果。
2024-03-09 14:19:19
657
原创 图论技巧之反向建图 (P1629题解)
对于单源最短路径无论是迪杰斯特拉还是SPFA,都只可以求出一个点到其他各它n-1个点的最短路径,但是假如现在需要求n-1个点到达某个点的最短路径一般会采用floyd算法,但是floyd算法的复杂度是On3因此很有可能会超时,因此此时可以采用反向建图,即边反向。对于邻接矩阵反向建图对于邻接表反向建图将原本add(a,b,c)变成add(b,a,c)即可,但是由于假如题目需要既有正向又有反向此时我们可以通过设置一个较大的数n,然后这样可以不印象正常建表。
2024-02-29 22:26:45
1117
原创 最小生成树 prim算法(附P1265 题解)
prim算法也使用了dist数组,但是和迪杰斯特拉这些算法中dist含义不同,prim算法中的dist算法是指各个点到连通部分的最短距离首先随机选取一个点加入连通块,并利用这个点初始化其他点到连通块距离,然后后续选取不在连通块中,但是距离连通块最近的点作为t,继续更新其他点到连通块距离。
2024-02-25 00:13:59
1524
1
原创 算法篇 高精度
在高精度加法中需要注意t表示前一位数字运算之后得到的余数即进位,在最后假如t不为0需要将这个余数放到结果的最高位 例如74+36,个位和十位计算完毕以后t为1,因此需要将其加到百位。
2024-01-18 17:48:21
436
1
原创 NLP论文阅读 GloVe Global Vectors for Word Representation
语义向量空间语义模型通过一个真实的向量来表达每个词。这些向量可以被用于各种各样应用的特征,例如信息检索,命名实体识别等。大多词向量方法依赖两个词向量间的角度或者距离去评估单词内在质量。近期提出了一个新的评估方法基于单词类比,这种方法探究单词向量空间的更加精细结构通过不仅仅检查单词向量间的距离同时还有他们不同的维度差异 例如“king is to queen as man is to woman” 在词向量空间中应该是king-queen = man -man。
2024-01-18 01:10:50
1619
1
原创 NLP论文阅读 word2vec Efficient Estimation of Word Representations in Vector Space
word2vec是一个将用于生成词向量(word embeding)词向量用于在机器学习中将句子中的词转换成特征向量,并希望转换成的这个特征向量可以尽可能地表达单词的特征,我之前常见使用的有one-hot n-gram等,都是将单词作为原子单位,例如one-hot会造成最后词向量过于庞大而且无法体现语义信息;其中N-gram模型利用前面n-1个单词来预测第二个词的概率,因此想要得到一个较好的N-gram模型需要庞大的数据万亿级别数据。
2024-01-16 01:10:46
1386
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人