- 博客(4)
- 收藏
- 关注
原创 AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks, ICML2020
通过NAS对GAN网络进行模型压缩的一篇文章,作者用图像翻译的CycleGAN和超分的ESRGAN来示例,这俩一个是17年一个是18年的模型。原文章相关资料如下:Paper:https://arxiv.org/abs/2006.08198Github:https://github.com/TAMU-VITA/AGD网络结构的总体设计总体结构上,很多NAS模型都采用了有向无环图(DAG)型搜索空间,但是这种结构会带来大量不规则的密集连接,计算量大,而且文章提到这种结构对硬件的利...
2020-07-14 20:07:20 552
原创 ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, ECCV2018
ESRGAN任务是超分,是ECCV18年的文章,曾在PIRM2018超分竞赛获得第一名,模型是在SRGAN基础上进行的改进;而SRGAN(CVPR17)是最早用GAN来做超分的文章,其2个特色分别是:(1)生成器使用残差块。使用残差结构主要是由于设计的网络比较深,为了保证梯度信息的有效传播,增强网络稳定性。(2)相较同行较早使用perceptual loss,是不是它最早提出的有待考证。回到ESRGAN,它在SRGAN基础上把模型的几个组成成分都改了:(1)生成器结构改进。(2)判别器改用.
2020-07-05 16:23:50 728
原创 Noise2Noise: Learning Image Restoration without Clean Data,CVPR2019
本篇文章是CVPR19年的文章,研究任务是去噪,motivation在于提升模型应用性,做到既不需要干净图像,也不像Noise2Noise那样需要噪声图像对,直接在噪声图像上训练。应用性可以,去噪效果上是不如N2N或完全有监督模型的。假设Method部分,在x=s+n即图像=信号+噪声的基础上,作者做出了几个重要假设:(1)干净图像的临近pixel是相关的,不独立,比较reasonable。(2)给定信号值,噪声是条件独立的。(3)第三个假设是仿效的Noise2Noise,假
2020-06-25 20:50:14 1105
原创 Toward Convolutional Blind Denoising of Real Photographs(CBDNet), CVPR2019
这篇文章是哈深和香港理工大学合作的文章,来自CVPR2019,任务是去噪。上周看的Noise2Void针对高斯噪声改进方法减少了训练所需数据,CBDNet这篇文章针对的则是模型在真实噪声上效果差的问题,使得去噪不再局限于较理想化的高斯噪声。CNN去噪模型的效果很大程度上取决于合成噪声和实际噪声的分布是否匹配,于是本文的去噪模型分为两阶段——第一阶段进行噪声估计,第二阶段将噪声估计结果与噪声图一并作为输入进行非盲去噪。噪声建模对噪声进行建模是为了生成去噪网络的训练集,建模越趋近真实噪声后续去噪效果
2020-06-25 20:47:49 1348
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人