MySQL性能调优之通过索引进行优化

想要了解索引的优化方式,必须要对索引的底层原理有所了解。

一、索引基本知识


    索引的优点
        1、大大减少了服务器需要扫描的数据量
        2、帮助服务器避免排序和临时表
        3、将随机io变成顺序io
    索引的用处
        1、快速查找匹配WHERE子句的行
        2、从consideration中消除行,如果可以在多个索引之间进行选择,mysql通常会使用找到最少行的索引
        3、如果表具有多列索引,则优化器可以使用索引的任何最左前缀来查找行
        4、当有表连接的时候,从其他表检索行数据
        5、查找特定索引列的min或max值
        6、如果排序或分组时在可用索引的最左前缀上完成的,则对表进行排序和分组
        7、在某些情况下,可以优化查询以检索值而无需查询数据行
    索引的分类
        主键索引
        唯一索引
        普通索引
        全文索引
        组合索引
    面试技术名词
        回表
        覆盖索引
        最左匹配
        索引下推
    索引采用的数据结构
        哈希表
        B+树
    索引匹配方式
        全值匹配
            全值匹配指的是和索引中的所有列进行匹配
                explain select * from staffs where name = 'July' and age = '23' and pos = 'dev';
        匹配最左前缀
            只匹配前面的几列
                explain select * from staffs where name = 'July' and age = '23';
                explain select * from staffs where name = 'July';
        匹配列前缀
            可以匹配某一列的值的开头部分
                explain select * from staffs where name like 'J%';
                explain select * from staffs where name like '%y';
        匹配范围值
            可以查找某一个范围的数据
                explain select * from staffs where name > 'Mary';
        精确匹配某一列并范围匹配另外一列
            可以查询第一列的全部和第二列的部分
                explain select * from staffs where name = 'July' and age > 25;
        只访问索引的查询
            查询的时候只需要访问索引,不需要访问数据行,本质上就是覆盖索引
                explain select name,age,pos from staffs where name = 'July' and age = 25 and pos = 'dev';

二、哈希索引


    基于哈希表的实现,只有精确匹配索引所有列的查询才有效
    在mysql中,只有memory的存储引擎显式支持哈希索引
    哈希索引自身只需存储对应的hash值,所以索引的结构十分紧凑,这让哈希索引查找的速度非常快
    哈希索引的限制
        1、哈希索引只包含哈希值和行指针,而不存储字段值,索引不能使用索引中的值来避免读取行
        2、哈希索引数据并不是按照索引值顺序存储的,所以无法进行排序
        3、哈希索引不支持部分列匹配查找,哈希索引是使用索引列的全部内容来计算哈希值
        4、哈希索引支持等值比较查询,也不支持任何范围查询
        5、访问哈希索引的数据非常快,除非有很多哈希冲突,当出现哈希冲突的时候,存储引擎必须遍历链表中的所有行指针,逐行进行比较,直到找到所有符合条件的行
        6、哈希冲突比较多的话,维护的代价也会很高
    案例:

当需要存储大量的URL,并且根据URL进行搜索查找,如果使用B+树,存储的内容就会很大
select id from url where url=""
也可以利用将url使用CRC32做哈希,可以使用以下查询方式:
select id fom url where url="" and url_crc=CRC32("")
此查询性能较高原因是使用体积很小的索引来完成查找

三、组合索引


    当包含多个列作为索引,需要注意的是正确的顺序依赖于该索引的查询,同时需要考虑如何更好的满足排序和分组的需要
    案例,建立组合索引a,b,c
        不同SQL语句使用索引情况

  

四、聚簇索引与非聚簇索引


    聚簇索引
        不是单独的索引类型,而是一种数据存储方式,指的是数据行跟相邻的键值紧凑的存储在一起
            优点
                1、可以把相关数据保存在一起
                2、数据访问更快,因为索引和数据保存在同一个树中
                3、使用覆盖索引扫描的查询可以直接使用页节点中的主键值
            缺点
                1、聚簇数据最大限度地提高了IO密集型应用的性能,如果数据全部在内存,那么聚簇索引就没有什么优势
                2、插入速度严重依赖于插入顺序,按照主键的顺序插入是最快的方式
                3、更新聚簇索引列的代价很高,因为会强制将每个被更新的行移动到新的位置
                4、基于聚簇索引的表在插入新行,或者主键被更新导致需要移动行的时候,可能面临页分裂的问题
                5、聚簇索引可能导致全表扫描变慢,尤其是行比较稀疏,或者由于页分裂导致数据存储不连续的时候
    非聚簇索引
        数据文件跟索引文件分开存放

五、覆盖索引


    基本介绍
        1、如果一个索引包含所有需要查询的字段的值,我们称之为覆盖索引
        2、不是所有类型的索引都可以称为覆盖索引,覆盖索引必须要存储索引列的值
        3、不同的存储实现覆盖索引的方式不同,不是所有的引擎都支持覆盖索引,memory不支持覆盖索引
    优势
        1、索引条目通常远小于数据行大小,如果只需要读取索引,那么mysql就会极大的较少数据访问量
        2、因为索引是按照列值顺序存储的,所以对于IO密集型的范围查询会比随机从磁盘读取每一行数据的IO要少的多
        3、一些存储引擎如MYISAM在内存中只缓存索引,数据则依赖于操作系统来缓存,因此要访问数据需要一次系统调用,这可能会导致严重的性能问题
        4、由于INNODB的聚簇索引,覆盖索引对INNODB表特别有用
    案例演示
        覆盖索引

1、当发起一个被索引覆盖的查询时,在explain的extra列可以看到using index的信息,此时就使用了覆盖索引

mysql> explain select store_id,film_id from inventory\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: inventory
   partitions: NULL
         type: index
possible_keys: NULL
          key: idx_store_id_film_id
      key_len: 3
          ref: NULL
         rows: 4581
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.01 sec)
​mysql> explain select actor_id,last_name from actor where last_name='HOPPER'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: actor
   partitions: NULL
         type: ref
possible_keys: idx_actor_last_name
          key: idx_actor_last_name
      key_len: 137
          ref: const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
​例如:actor使用innodb存储引擎,并在last_name字段又二级索引,虽然该索引的列不包括主键actor_id,但也能够用于对actor_id做覆盖查询

2、在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以进一步的进行优化,可以使用innodb的二级索引来覆盖查询。

mysql> explain select actor_id,last_name from actor where last_name='HOPPER'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: actor
   partitions: NULL
         type: ref
possible_keys: idx_actor_last_name
          key: idx_actor_last_name
      key_len: 137
          ref: const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)

六、优化小细节


    1、当使用索引列进行查询的时候尽量不要使用表达式,把计算放到业务层而不是数据库层
        select actor_id from actor where actor_id=4;
        select actor_id from actor where actor_id+1=5;
    2、尽量使用主键查询,而不是其他索引,因此主键查询不会触发回表查询
    3、使用前缀索引
        前缀索引实例说明.md
    4、使用索引扫描来排序
        使用索引扫描来做排序.md
    5、union all,in,or都能够使用索引,但是推荐使用in
        explain select * from actor where actor_id = 1 union all select * from actor where actor_id = 2;
        explain select * from actor where actor_id in (1,2);
         explain select * from actor where actor_id = 1 or actor_id =2;
   6、 范围列可以用到索引
        范围条件是:<、>
        范围列可以用到索引,但是范围列后面的列无法用到索引,索引最多用于一个范围列
   7、 强制类型转换会全表扫描
        explain select * from user where phone=13800001234;
            不会触发索引
        explain select * from user where phone='13800001234';
            触发索引
    8、更新十分频繁,数据区分度不高的字段上不宜建立索引
        更新会变更B+树,更新频繁的字段建议索引会大大降低数据库性能
        类似于性别这类区分不大的属性,建立索引是没有意义的,不能有效的过滤数据,
        一般区分度在80%以上的时候就可以建立索引,区分度可以使用 count(distinct(列名))/count(*) 来计算
    创建索引的列,不允许为null,可能会得到不符合预期的结果
    当需要进行表连接的时候,最好不要超过三张表,因为需要join的字段,数据类型必须一致
    能使用limit的时候尽量使用limit
    单表索引建议控制在5个以内
    单索引字段数不允许超过5个(组合索引)
    创建索引的时候应该避免以下错误概念
        索引越多越好
        过早优化,在不了解系统的情况下进行优化

七、索引监控


    show status like 'Handler_read%';
    参数解释
        Handler_read_first:读取索引第一个条目的次数
        Handler_read_key:通过index获取数据的次数
        Handler_read_last:读取索引最后一个条目的次数
        Handler_read_next:通过索引读取下一条数据的次数
        Handler_read_prev:通过索引读取上一条数据的次数
        Handler_read_rnd:从固定位置读取数据的次数
        Handler_read_rnd_next:从数据节点读取下一条数据的次数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值