pandas 修改 DataFrame 列名

pandas 修改 DataFrame 列名

问题:
有一个DataFrame,列名为:[‘ a ′ , ′ a', ' a,b’, ‘ c ′ , ′ c', ' c,d’, ‘$e’]
现需要改为:[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
有何办法?

import pandas as pd
df = pd.DataFrame({‘ a ′ : [ 1 ] , ′ a': [1], ' a:[1],b’: [1], ‘ c ′ : [ 1 ] , ′ c': [1], ' c:[1],d’: [1], ‘$e’: [1]})

解决:

方式一:columns属性

# ①暴力
df.columns = ['a', 'b', 'c', 'd', 'e']

# ②修改
df.columns = df.columns.str.strip('$')

# ③修改
df.columns = df.columns.map(lambda x:x[1:])

方式二:rename方法、columns参数

# ④暴力(好处:也可只修改特定的列)
df.rename(columns=('$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}, inplace=True) 

# ⑤修改
df.rename(columns=lambda x:x.replace('$',''), inplace=True)


>>> map(lambda x:x[1:],('$a', '$b', '$c', '$d', '$e'))
<map object at 0x0000000001E77BE0>
>>> list(map(lambda x:x[1:],('$a', '$b', '$c', '$d', '$e')))
['a', 'b', 'c', 'd', 'e']

参考:https://www.cnblogs.com/hhh5460/p/5816774.html

### 回答1: 可以使用rename()方法来修改pandas dataframe列名。具体操作如下: 1. 使用rename()方法,将原列名和新列名以字典形式传入。 例如,将列名A改为B: ``` df.rename(columns={'A': 'B'}, inplace=True) ``` 2. 如果要修改多个列名,可以将多个字典放在一个列表中,然后传入rename()方法。 例如,将列名A改为B,将列名C改为D: ``` df.rename(columns={'A': 'B', 'C': 'D'}, inplace=True) ``` 3. 如果只想修改部分列名,可以使用列索引来选择需要修改的列,然后再使用rename()方法。 例如,将第一列的列名A改为B: ``` df.rename(columns={df.columns[0]: 'B'}, inplace=True) ``` 注意,修改列名时,需要将inplace参数设置为True,才能直接修改dataframe。如果不设置inplace参数或者将其设置为False,则会返回一个新的dataframe,原dataframe不会被修改。 ### 回答2: 在pandas中,可以用rename方法来修改DataFrame列名。下面我会详细介绍如何使用rename方法。 首先,我们可以创建一个简单的DataFrame列名为A和B。 ```python import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6]} df = pd.DataFrame(data) print(df) ``` 这将输出以下内容: ``` A B 0 1 4 1 2 5 2 3 6 ``` 现在,我们想将列A的名称更改为列C。我们可以使用rename方法来实现,方法如下: ```python df = df.rename(columns={'A': 'C'}) print(df) ``` 这将输出以下内容: ``` C B 0 1 4 1 2 5 2 3 6 ``` 我们可以看到,列A已经成功地重命名为了列C。 另外,我们还可以使用rename方法同时重命名多个列。例如,我们想同时将列A和列B的名称更改为列C和列D,我们可以这样做: ```python df = df.rename(columns={'A': 'C', 'B': 'D'}) print(df) ``` 这将输出以下内容: ``` C D 0 1 4 1 2 5 2 3 6 ``` 我们可以看到,列A和列B已经成功地重命名为了列C和列D。 需要说明的是,rename方法返回一个新的数据集,原始数据集不会改变。如果需要在原始数据集上修改列名,可以通过设置inplace参数为True来实现: ```python df.rename(columns={'A': 'C'}, inplace=True) ``` 此时,将直接在原始数据集上修改列名。 总之,使用rename方法可以简单快捷地修改DataFrame列名。只需要通过一个字典,即可将原始列名和新列名一一对应。 ### 回答3: 在Pandas修改DataFrame列名非常简单,只需要使用rename()函数就可以完成。该函数可以接受一个字典参数和一个inplace参数。字典参数是原始列名和新列名的键值对,inplace参数指定是否修改DataFrame还是返回一个新的DataFrame。 例如,我们有以下示例DataFrame: ``` import pandas as pd data = { 'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35], 'gender': ['F', 'M', 'M'] } df = pd.DataFrame(data) ``` 现在我们要将列名'name'改为'full_name',将列名'age'改为'years_old',将列名'gender'改为'sex',可以使用以下代码: ``` df.rename(columns={'name': 'full_name', 'age': 'years_old', 'gender': 'sex'}, inplace=True) ``` 结果会是: ``` full_name years_old sex 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M ``` 注意第二个参数inplace设置为True,表示直接修改DataFrame,否则该函数返回一个新的DataFrame,而原始DataFrame不会被修改。 除了使用rename()函数,还可以手动修改DataFrame.columns属性,例如: ``` df.columns = ['full_name', 'years_old', 'sex'] ``` 结果相同: ``` full_name years_old sex 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M ``` 这两种方法是等价的,如果只需修改一两个列名,rename()函数比较方便;如果需要修改多个或所有列名,直接修改columns属性较方便。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值