题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0.
解决这个问题首先考虑对于任意的N,是否这样的M一定存在。可以证明,M是一定存在的,而且不唯一。
简单证明:列举如下数列
1,10,100,1000,……
每个元素modN取值只能是 0——N-1之间的整数,故至少存在N个数,他们modN的结果是相同的(抽屉原则)。从而这N个数的和必然能被N整除。
根据编程之美的算法,写了个java代码:
public class FindNumber {
private static final int max = 999999;
private long B[] = new long[max];
private int N = 2;
public FindNumber(int number){
this.N = number;
}
private void find(){
if(N < 1){
System.out.println(N);
return ;
}
for(int i = 0; i < N; i++){
B[i] = -1;
}
B[0] = 0;
B[1] = 1;
long tmp = 1;
for(int i = 1; ; i++){
if(i > 1)
tmp *= 10;
for(int j = 0; j < N; j++){
if(B[j] == -1 || B[j] >= tmp)
continue;
long a = tmp+B[j];
int t = (int)(a%N);
if(t == 0){
System.out.println("result is :"+a);
return;
}
if(B[t] == -1 ||B[t] > a)
B[t] = a;
}
}
}
public static void main(String args[]){
FindNumber f = new FindNumber(299);
f.find();
}
}