决策树(DecisionTree)

记录下决策树的原理和简单Demo;

一、决策树原理

决策树能够生成清晰的基于特征选择不同预测结果的树状结构;希望更好的理解手上的数据的时候,往往可以使用决策树。
在实际应用中,受限于它的简单性,决策树更大的用处是作为一些更有用的算法的基石,例如随机森林。

二、决策树优缺点

  • 优点:计算复杂度不高,输出结果易于理解;对中间值的缺失不敏感;可以处理不相关的特征数据;
  • 缺点:可能会产生过度匹配问题;
  • 适用数据类型:数值型、标称型;

三、决策树算法种类

  • ID3:以信息增益作为树的分裂准则;
  • C4.5:以基于信息增益的增益率作为树的分裂准则,解决了ID3的偏向与多值属性问题;
  • CART:ID3和C4.5只能处理分类问题,而CART可以处理分类和回归问题;

四、信息增益

信息增益用于度量一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于另一个随机变量而减少的不肯定性,也可以简单认为一个随机变量的引入导致了另一个随机变量的混乱性变化(约束)。

g(D,A) = H(D) - H(D|A)

对于决策树来说,信息增益越大,特征对最终的分类结果影响也越大。

五、Demo

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from math import log
import operator

"""
Parameters:
    无
Returns:
    dataSet - 数据集
    labels - 特征标签
"""
# 函数说明:创建测试数据集
def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],#数据集,类别是是否给贷款
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']#特征标签
    return dataSet, labels#返回数据集和分类属性

"""
Parameters:
    dataSet - 数据集
Returns:
    shannonEnt - 经验熵(香农熵)
"""
# 函数说明:计算给定数据集的经验熵(香农熵)
def calcShannonEnt(dataSet):
    numEntires = len(dataSet)                      #返回数据集的行数
    labelCounts = {}                               #保存每个标签(Label)出现次数的字典
    for featVec in dataSet:                        #对每组特征向量进行统计
        currentLabel = featVec[-1]                 #提取标签(Label)信息
        if currentLabel not in labelCounts.keys(): #如果标签(Label)没有放入统计次数的字典,添加进去
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1             #Label计数
    shannonEnt = 0.0                               #经验熵(香农熵)
    for key in labelCounts:                        #计算香农熵
        prob = float(labelCounts[key]) / numEntires#选择该标签(Label)的概率
        shannonEnt -= prob * log(prob, 2)          #利用公式计算
    return shannonEnt                              #返回经验熵(香农熵)

"""
Parameters:
    dataSet - 待划分的数据集
    axis - 划分数据集的特征
    value - 需要返回的特征的值
Returns:
    无
"""
# 函数说明:按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):
    retDataSet = []                                #创建返回的数据集列表
    for featVec in dataSet:                        #遍历数据集
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]        #去掉axis特征
            reducedFeatVec.extend(featVec[axis+1:])#将符合条件的添加到返回的数据集
            retDataSet.append(reducedFeatVec)
    return retDataSet                              #返回划分后的数据集

"""
Parameters:
    dataSet - 数据集
Returns:
    bestFeature - 信息增益最大的(最优)特征的索引值
"""
# 函数说明:选择最优特征
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                     #特征数量
    baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵
    bestInfoGain = 0.0                                    #信息增益
    bestFeature = -1                                      #最优特征的索引值
    for i in range(numFeatures):                          #遍历所有特征
        #获取dataSet的第i个所有特征
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)                         #创建set集合{},元素不可重复
        newEntropy = 0.0                                   #经验条件熵
        for value in uniqueVals:                           #计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)   #subDataSet划分后的子集
            prob = len(subDataSet) / float(len(dataSet))   #计算子集的概率
            newEntropy += prob * calcShannonEnt(subDataSet)#根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy                #信息增益
        # print("第%d个特征的增益为%.3f" % (i, infoGain))   #打印每个特征的信息增益
        if (infoGain > bestInfoGain):                      #计算信息增益
            bestInfoGain = infoGain                        #更新信息增益,找到最大的信息增益
            bestFeature = i                                #记录信息增益最大的特征的索引值
    return bestFeature                                     #返回信息增益最大的特征的索引值

"""
Parameters:
    classList - 类标签列表
Returns:
    sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
# 函数说明:统计classList中出现此处最多的元素(类标签)
def majorityCnt(classList):
    classCount = {}
    for vote in classList:#统计classList中每个元素出现的次数
        if vote not in classCount.keys():classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)#根据字典的值降序排序
    return sortedClassCount[0][0]#返回classList中出现次数最多的元素

"""
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""
# 函数说明:创建决策树
def createTree(dataSet, labels, featLabels):
    classList = [example[-1] for example in dataSet]       #取分类标签(是否放贷:yes or no)
    if classList.count(classList[0]) == len(classList):    #如果类别完全相同则停止继续划分
        return classList[0]
    if len(dataSet[0]) == 1:                               #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)           #选择最优特征
    bestFeatLabel = labels[bestFeat]                       #最优特征的标签
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                            #根据最优特征的标签生成树
    del(labels[bestFeat])                                  #删除已经使用特征标签
    featValues = [example[bestFeat] for example in dataSet]#得到训练集中所有最优特征的属性值
    uniqueVals = set(featValues)                           #去掉重复的属性值
    for value in uniqueVals:                               #遍历特征,创建决策树。
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
    return myTree

if __name__ == '__main__':
    dataSet, labels = createDataSet()
    featLabels = []
    # 贷款申请的决策树
    myTree = createTree(dataSet, labels, featLabels)
    print(myTree)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hello2mao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值