基于BP神经网络的数字识别

本文介绍了基于BP神经网络的数字识别方法,详细阐述了BP网络的原理,包括网络结构、sigmoid函数的作用。此外,还涉及图像预处理步骤,如灰度转化、二值化、图像锐化和噪声去除。训练过程中,采用特定的输入输出矩阵,通过不断调整权重以达到误差最小。最后,说明了如何根据输出矩阵识别数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、BP神经网络

BP(Back Propagation)表示反向传播。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

图1 三层BP网

如图所示,最下面一层为输入层,中间为隐藏层,最上面为输出层。其中X={x1,x2.......xn},Y={

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值