数据分析处理库-pandas

pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

pandas中主要有两种数据类型:

  • Series: 一维   带标签数组
  • DataFrame: 二维 

DataFrame结构是由series构成的,series相当于矩阵当中的一行或者一列。

常用方法:

import pandas
food_info = pandas.read_cvs("food_info")
food_info.head(3)    #显示前三条数据(如果不传参数,默认显示前五条数据)
food_info.tail(3)    #显示最后三行数据
food_info.columns    #得到所有的列名
food_info.shape      #得到数据的行数和列数
food_info.loc[0]     #取出索引为0的数据
#可以直接用列名定位数据取出
col_names = food_info.columns.tolist()   #将所有的列名组成一个List
food_info["iron"] = iron_gram      #新建一列并且为其赋值
food_info["iron"].max       #得到这列数据中的最大值
titanic_survival.pivot_table(index = "Pclass",value = "Age") 
                        #pivot_table的作用就是计算两列的关系以Pclass分组来统计Age的数量
titanic_survival.dropna(axis = 0,subset=["Age","Sex"]])  
                         #剔除Age和Sex中的缺失值 
titanic_survival.sort_value("Age",ascending = False)    #对Age进行降序排列 

 

 

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值