数据仓库
lcl_bigdata
这个作者很懒,什么都没留下…
展开
-
ETL讲解
ETL讲解(很详细!!!)ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。ETL是BI项目重要的一个环节。 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败。 ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(Operation...转载 2020-07-01 09:35:30 · 248 阅读 · 0 评论 -
数据仓库--数据分层(ETL、ODS、DW、APP、DIM)
数据仓库各层说明: 一、数据加载层:ETL(Extract-Transform-Load) 二、数据运营层:ODS(Operational Data Store) 三、数据仓库层:DW(Data Warehouse) 1. 数据明细层:DWD(Data Warehouse Detail) 2. 数据中间层:DWM(Data WareHouse Middle) 3. 数据服务层:DWS(Data WareHouse Service) 四、数据应用层:A原创 2020-06-30 15:22:14 · 48870 阅读 · 18 评论 -
数据仓库--概念、特点、建模
数据仓库定义:数据仓库是一个面向主题的、集成的、随时间变化的、但信息本身相对稳定的数据集合,用于对管理决策过程的支持。数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用使用。数据仓库特点:面向主题的:数据仓库都是基于某个明确的主题,仅需要与该主题相关的数据,其他的无关细节将会被去掉。集成的:数据仓库里面的数据都是经过ETL(Extract-Transform-Load 抽取-转换-加载)操作后被集中放到同一个数据源,数据仓库里的..原创 2020-06-30 15:14:11 · 415 阅读 · 0 评论