TensorFlow使用QueueRunner和Coordinator来管理多线程队列操作

本文介绍了TensorFlow中,队列作为异步计算关键机制的使用,重点讲解了如何结合tf.QueueRunner和tf.Coordinator进行多线程协同操作。示例代码展示了如何启动多个线程将随机数入队,并从中出队获取数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TensorFlow中,队列不仅是一种数据结构,还是异步计算张量取值的一个重要机制。

TensorFlow提供了tf.Coordinatortf.QueueRunner两个类来完成多线程协同的功能。以下代码用来简单的展示两者一起使用的示例。



import tensorflow as tf

# 先申明队列
queue = tf.FIFOQueue(100, "float")
# 定义队列的入队操作
enqueue_op = queue.enqueue([tf.random_normal([1])])

# 创建多个线程来运行入队操作
# def __init__(self, queue=None, enqueue_ops=None, close_op=None,
#                cancel_op=None, queue_closed_exception_types=None,
#                queue_runner_def=None, import_scope=None):
# 表示创建了5个线程,每个线程中运行的是enqueue_op操作
qr = tf.train.QueueRunner(queue, [enqueue_op] * 5)

# 加入到TensorFlow的计算图中  使用TensorFlow的默认计算图
# def add_queue_runner(qr, collection=ops.GraphKeys.QUEUE_RUNNERS):
tf.train.add_queue_runner(qr)
# 定义出队操作
out_tensor = queue.dequeue()

with tf.Session() as sess:
    # 使用tf.train.Coordinator来协同启动线程
    coord = tf.train.Coordinator()
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值