给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/
1 3
输出: true
示例 2:
输入:
5
/
1 4
/
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
tips:递归法,记录左右子树中的最大值和最小值
class Solution {
public:
bool isValidBST(TreeNode* root) {
int max = 0,min=0;
return recursiveIsVaildBST(root,max,min);
}
bool recursiveIsVaildBST(TreeNode* root,int & maxVal,int & minVal) {
if(root==NULL) {
return true;
}
if(root->left==NULL && root->right==NULL) {
maxVal=root->val;
minVal=root->val;
return true;
}
int minL=INT32_MAX,minR=INT32_MAX,maxL=INT32_MIN,maxR=INT32_MIN;
bool res=true;
if(root->left!=NULL) {
res=res&&recursiveIsVaildBST(root->left,maxL,minL);
if(maxL>=root->val) {
return false;
}
}
if(root->right!=NULL) {
res=res&&recursiveIsVaildBST(root->right,maxR,minR);
if(minR<root->val) {
return false;
}
}
maxVal=max(maxR,root->val);
minVal=min(minL,root->val);
if(!res) {
return false;
}
return true;
}
};
精简版本:
class Solution {
public:
bool isValidBST(TreeNode* root) {
return fun(root,LONG_MIN,LONG_MAX);
}
bool fun(TreeNode* root, long low, long high) {
if (root == NULL) return true;
long num = root->val;
if (num <= low || num >= high) return false;
return fun(root->left, low, num) && fun(root->right, num, high);
}
};