给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
方法一:暴力法(超出时间限制)
思路:时间复杂度O(n^2),空间复杂度O(1) 。
【1】借助2个for循环,计算出所有可能的值。取出最大值。
int maxArea(vector<int>& height) {
int max = 0;
//开始位置
for (int begin = 0;begin < height.size() - 1;++begin) {
//结束位置
for (int end = begin + 1;end < height.size();++end) {
int h = min(height[begin], height[end]);
int capacity = (end - begin)*h;
max = max > capacity ? max : capacity;
}
}
return max;
}
方法二:双指针法
思路:时间复杂度O(logN),空间复杂度O(1)
【1】使用2个指针分别指向数组的头下标begin和尾下标end
【2】做while遍历,只要begin<end条件。比较数组begin和end的大小,较小的往中间靠
【3】每循环一次计算的值与最大值max比较,最终返回max
int maxArea(vector<int>& height) {
int begin = 0, end = height.size() - 1, max = -1;
while (begin < end) {
int h = min(height[begin], height[end]); //较短的高度
int capacity = h * (end - begin); //当前容量
max = max > capacity ? max : capacity;
if (height[begin] < height[end]) {
++begin;
}
else {
--end;
}
}
return max;
}