【2022暑期集训7月21日】 翻转颜色

翻转颜色( reversal \text{reversal} reversal

题目描述

给定一个长度为 2 n 2n 2n 的字符串 S S S S S S 表示 2 N 2N 2N 个格子的染色情况。 S i S_i Si 1 ≤ i ≤ 2 n 1 ≤ i ≤ 2n 1i2n)为 B 时表示第 i i i 个格子为黑色;否则 S i S_i SiW,表示第 i i i 个格子为白色。

你需要进行恰好 n n n 次操作,使得所有格子的颜色都变为白色。第 i i i 次操作时,你可以选择两个未在之前操作中选择过的格子 l i , r i l_i ,r_i li,ri l i < r i l_i < r_i li<ri),并翻转所有下标在 [ l i , r i ] [l_i,r_i] [li,ri] 中的格子的颜色。所有操作结束后,每个格子应恰好被选择一次。

请求出合法操作序列的方案数对 1 0 9 + 7 10^9+7 109+7 取模的结果。我们认为两个操作序列不同,当且仅当存在某个正整数 i ∈ [ 1 , n ] i ∈ [1, n] i[1,n] 使得两个操作序列对应的 l i l_i li 不同或 r i r_i ri 不同。

输入格式

从标准输入读入数据。

本题有多组数据。

输入的第一行包含一个正整数 T T T,表示数据组数。

接下来 2 T 2T 2T 行,第 ( 2 i − 1 ) (2i − 1) (2i1) 行和第 2 i 2i 2i 行表示第 i i i 组数据。其中,第 ( 2 i − 1 ) (2i − 1) (2i1) 行包含一个正整数,表示这组数据中的 n n n;第 2 i 2i 2i 行包含一个仅由 BW 构成的长度为 2 n 2n 2n 的字符串 S S S,含义如题面所示。

输出格式

输出到标准输出。

输出 T T T 行,其中第 i i i 行包含一个整数,表示第 i i i 组数据的答案。

样例

样例输入

2
2
BWWB
4
BWBBWWWB

样例输出

4
288

思路

看到这道题,你的第一反应是什么?

一个序列,每个数有两种状态,每次可以翻转一段区间内的状态,我们要把所有数转化成同一个状态

显然这题应该和奇偶性有关。

为了方便,后面用“0” 表示 W, “1” 表示 B

我们的目标状态是一个全0的序列,也就是说,原来是“1”的位置需要被覆盖奇数次,反之需要偶数次。

接下来思考这个条件应该如何运用

先想一想搜索的时候,你会怎么搜?

当然是从左往右,按照同一个方向搜(不然怎么递归)

我们思考的时候,也同样可以这样假设:在考虑第i个数的时候, [1 , i)内的数已经全部确定,不需要再考虑。

在这道题里,“确定”可以理解为

  • 被占用(不可以再次被选中)
  • 如果局面存在解,那么操作完毕后,该位置一定合法(无后效性)
  • 确定是左端点或右端点

其中第三条是我们的分析重点

首先,看到左端点和右端点,你能想到什么题目?

显然,当我们确定下来每个端点是左端点还是右端点时,总情况数是容易计算的。

那么怎么确定端点呢?

这里就要用到刚才的奇偶判断了。

首先,第 i i i 个位置被 [ 1 , i ) [1, i) [1,i) 为起点的区间覆盖次数,等于 [ 1 , i ) [1, i) [1,i) 中左端点数量减去右端点数量

[ 1 , i ) [1, i) [1,i) a a a 个左端点, b b b 个右端点

显然 a − b ≡ a + b = i − 1 ( m o d 2 ) a - b ≡ a + b = i - 1 \pmod 2 aba+b=i1(mod2)

假设 i i i 除以 2 2 2 r r r

那么如果 s [ i ] = r s[i] = r s[i]=r,则 i i i 是左端点

否则是左端点

我们可以从左往右扫描,过程中记录剩余的左括号数量,遇到右括号更新答案和括号数量

需要注意的是, s [ 0 ] s[0] s[0] 不可以是右端点, s [ 2 n − 1 ] s[2n - 1] s[2n1] 不可以是左端点!(显然)

因此需要加一个小小的特判

Code

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include <bits/stdc++.h>
using namespace std;
char s[200005];
int t, n;

int main()
{
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d", &n);
		scanf("%s", s + 1);
		if (s[1] == 'W' || s[n << 1] == 'W')
		{
			puts("0");
			continue;
		}
		bool now = 0;
		int ans = 1, left = 1;
		for (int i = 2; i < n << 1; ++i)
		{
			if (now ^= (s[i] == s[i - 1]))
			{
				ans = 1ll * ans * left % 1000000007;
				--left;
			}
			else
				++left;
		}
		if (left - 1)
		{
			puts("0");
			continue;
		}
		else
		{
			while (n)
			{
				ans = 1ll * ans * n % 1000000007;
				--n;
			}
			printf("%d\n", ans);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值