翻转颜色( reversal \text{reversal} reversal)
题目描述
给定一个长度为 2 n 2n 2n 的字符串 S S S, S S S 表示 2 N 2N 2N 个格子的染色情况。 S i S_i Si( 1 ≤ i ≤ 2 n 1 ≤ i ≤ 2n 1≤i≤2n)为 B 时表示第 i i i 个格子为黑色;否则 S i S_i Si 为 W,表示第 i i i 个格子为白色。
你需要进行恰好 n n n 次操作,使得所有格子的颜色都变为白色。第 i i i 次操作时,你可以选择两个未在之前操作中选择过的格子 l i , r i l_i ,r_i li,ri( l i < r i l_i < r_i li<ri),并翻转所有下标在 [ l i , r i ] [l_i,r_i] [li,ri] 中的格子的颜色。所有操作结束后,每个格子应恰好被选择一次。
请求出合法操作序列的方案数对 1 0 9 + 7 10^9+7 109+7 取模的结果。我们认为两个操作序列不同,当且仅当存在某个正整数 i ∈ [ 1 , n ] i ∈ [1, n] i∈[1,n] 使得两个操作序列对应的 l i l_i li 不同或 r i r_i ri 不同。
输入格式
从标准输入读入数据。
本题有多组数据。
输入的第一行包含一个正整数 T T T,表示数据组数。
接下来 2 T 2T 2T 行,第 ( 2 i − 1 ) (2i − 1) (2i−1) 行和第 2 i 2i 2i 行表示第 i i i 组数据。其中,第 ( 2 i − 1 ) (2i − 1) (2i−1) 行包含一个正整数,表示这组数据中的 n n n;第 2 i 2i 2i 行包含一个仅由 B 和 W 构成的长度为 2 n 2n 2n 的字符串 S S S,含义如题面所示。
输出格式
输出到标准输出。
输出 T T T 行,其中第 i i i 行包含一个整数,表示第 i i i 组数据的答案。
样例
样例输入
2
2
BWWB
4
BWBBWWWB
样例输出
4
288
思路
看到这道题,你的第一反应是什么?
一个序列,每个数有两种状态,每次可以翻转一段区间内的状态,我们要把所有数转化成同一个状态
显然这题应该和奇偶性有关。
为了方便,后面用“0” 表示 W, “1” 表示 B
我们的目标状态是一个全0的序列,也就是说,原来是“1”的位置需要被覆盖奇数次,反之需要偶数次。
接下来思考这个条件应该如何运用
先想一想搜索的时候,你会怎么搜?
当然是从左往右,按照同一个方向搜(不然怎么递归)
我们思考的时候,也同样可以这样假设:在考虑第i个数的时候, [1 , i)内的数已经全部确定,不需要再考虑。
在这道题里,“确定”可以理解为
- 被占用(不可以再次被选中)
- 如果局面存在解,那么操作完毕后,该位置一定合法(无后效性)
- 确定是左端点或右端点
其中第三条是我们的分析重点
首先,看到左端点和右端点,你能想到什么题目?
显然,当我们确定下来每个端点是左端点还是右端点时,总情况数是容易计算的。
那么怎么确定端点呢?
这里就要用到刚才的奇偶判断了。
首先,第 i i i 个位置被 [ 1 , i ) [1, i) [1,i) 为起点的区间覆盖次数,等于 [ 1 , i ) [1, i) [1,i) 中左端点数量减去右端点数量
设 [ 1 , i ) [1, i) [1,i) 有 a a a 个左端点, b b b 个右端点
显然 a − b ≡ a + b = i − 1 ( m o d 2 ) a - b ≡ a + b = i - 1 \pmod 2 a−b≡a+b=i−1(mod2)
假设 i i i 除以 2 2 2 余 r r r
那么如果 s [ i ] = r s[i] = r s[i]=r,则 i i i 是左端点
否则是左端点
我们可以从左往右扫描,过程中记录剩余的左括号数量,遇到右括号更新答案和括号数量
需要注意的是, s [ 0 ] s[0] s[0] 不可以是右端点, s [ 2 n − 1 ] s[2n - 1] s[2n−1] 不可以是左端点!(显然)
因此需要加一个小小的特判
Code
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include <bits/stdc++.h>
using namespace std;
char s[200005];
int t, n;
int main()
{
scanf("%d", &t);
while (t--)
{
scanf("%d", &n);
scanf("%s", s + 1);
if (s[1] == 'W' || s[n << 1] == 'W')
{
puts("0");
continue;
}
bool now = 0;
int ans = 1, left = 1;
for (int i = 2; i < n << 1; ++i)
{
if (now ^= (s[i] == s[i - 1]))
{
ans = 1ll * ans * left % 1000000007;
--left;
}
else
++left;
}
if (left - 1)
{
puts("0");
continue;
}
else
{
while (n)
{
ans = 1ll * ans * n % 1000000007;
--n;
}
printf("%d\n", ans);
}
}
}