Schur不等式(舒尔不等式)

舒尔( Schur \texttt{Schur} Schur)不等式1

具体内容

Schur \texttt{Schur} Schur 不等式: x , y , z x,y,z xyz 为非负实数, r r r 为实数时,下列不等式成立
x r ( x − y ) ( x − z ) + y r ( y − x ) ( y − z ) + z r ( z − x ) ( z − y ) ≥ 0 x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0 xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

例子

  • r = 0 r=0 r=0
    ( x − y ) ( x − z ) + ( y − x ) ( y − z ) + ( z − x ) ( z − y ) ≥ 0 (x-y)(x-z)+(y-x)(y-z)+(z-x)(z-y)\ge 0 (xy)(xz)+(yx)(yz)+(zx)(zy)0 ⇔ x 2 + y 2 + z 2 − x y − y z − z x ≥ 0 \Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge 0 x2+y2+z2xyyzzx0 ⇔ 1 2 { ( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 } ≥ 0 \Leftrightarrow \frac{1}{2}\{(x-y)^2+(y-z)^2+(z-x)^2\} \ge 0 21{(xy)2+(yz)2+(zx)2}0
  • r = 1 r=1 r=1
    x ( x − y ) ( x − z ) + y ( y − x ) ( y − z ) + z ( z − x ) ( z − y ) ≥ 0 x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)\ge 0 x(xy)(xz)+y(yx)(yz)+z(zx)(zy)0 ⇔ x 3 + y 3 + z 3 + 3 x y z ≥ x y ( x + y ) + y z ( y + z ) + z x ( z + x ) \Leftrightarrow x^3+y^3+z^3+3xyz\ge xy(x+y)+yz(y+z)+zx(z+x) x3+y3+z3+3xyzxy(x+y)+yz(y+z)+zx(z+x)
  • r = 1 2 r=\dfrac{1}{2} r=21 x ( x − y ) ( x − z ) + y ( y − x ) ( y − z ) + z ( z − x ) ( z − y ) ≥ 0 \sqrt{x}(x-y)(x-z)+\sqrt{y}(y-x)(y-z)+\sqrt{z}(z-x)(z-y)\ge 0 x (xy)(xz)+y (yx)(yz)+z (zx)(zy)0 ⇔ x 3 2 ( y + z − x ) + y 3 2 ( z + x − y ) + z 3 2 ( x + y − z ) ≤ x y z ( 1 x + 1 y + 1 z ) \Leftrightarrow x^{\frac{3}{2}}(y+z-x)+y^{\frac{3}{2}}(z+x-y)+z^{\frac{3}{2}}(x+y-z)\le xyz\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right) x23(y+zx)+y23(z+xy)+z23(x+yz)xyz(x 1+y 1+z 1)

证明

证明:
左边是 x , y , z x,y,z x,y,z 的对称式,设 x ≥ y ≥ z x\ge y\ge z xyz 不失一般性.

  1. r > 0 r>0 r>0
    x r ( x − y ) ( x − z ) + y r ( y − x ) ( y − z ) + z r ( z − x ) ( z − y ) x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y) xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy) = ( x − y ) { x r ( x − z ) − y r ( y − z ) } + z r ( x − z ) ( y − z ) =(x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z) =(xy){xr(xz)yr(yz)}+zr(xz)(yz) x r ≥ y r ≥ 0 ,   x − z ≥ y − z ≥ 0 x^r\ge y^r \ge 0,\ x-z\ge y-z \ge 0 xryr0, xzyz0
    因为 ( x − y ) [ x r ( x − z ) − y r ( y − z ) ] ≥ 0 , (x-y)\left[x^r(x-z)-y^r(y-z)\right]\ge 0\text{,} (xy)[xr(xz)yr(yz)]0又因为 z r ≥ 0 ,   x − z ≥ 0 ,   y − z ≥ 0 , z r ( x − z ) ( y − z ) ≥ 0 z^r\ge 0,\ x-z\ge 0,\ y-z \ge 0, z^r(x-z)(y-z)\ge 0 zr0, xz0, yz0,zr(xz)(yz)0根据 ( x − y ) { x r ( x − z ) − y r ( y − z ) } + z r ( x − z ) ( y − z ) ≥ 0 (x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)\ge 0 (xy){xr(xz)yr(yz)}+zr(xz)(yz)0所以, x r ( x − y ) ( x − z ) + y r ( y − x ) ( y − z ) + z r ( z − x ) ( z − y ) ≥ 0 x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0 xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

  2. r ≤ 0 r\le 0 r0
    x r ( x − y ) ( x − z ) + y r ( y − x ) ( y − z ) + z r ( z − x ) ( z − y ) x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y) xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy) = x r ( x − y ) ( x − z ) + ( y − z ) { z r ( x − z ) − y r ( x − y ) } =x^r(x-y)(x-z)+(y-z)\{z^r(x-z)-y^r(x-y)\} =xr(xy)(xz)+(yz){zr(xz)yr(xy)}同理可得, x r ( x − y ) ( x − z ) + y r ( y − x ) ( y − z ) + z r ( z − x ) ( z − y ) ≥ 0 x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0 xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

例题

1  a , b , c a,b,c a,b,c 为非负实数时,请证明以下不等式。
( a + b − c ) ( b + c − a ) ( c + a − b ) ≤ a b c (a+b-c)(b+c-a)(c+a-b)\le abc (a+bc)(b+ca)(c+ab)abc

2 非负实数 a , b , c a,b,c a,b,c a + b + c = 1 a+b+c=1 a+b+c=1,请证明以下不等式。
a 3 + b 3 + c 3 + 6 a b c ≥ 1 4 a^3+b^3+c^3+6abc\ge \frac{1}{4} a3+b3+c3+6abc41

广告

绿树公司 - 官方网站:https://wangping-lvshu.github.io/LvshuNew/

绿树智能 - 官方网站:https://wangping-lvshu.github.io/LvshuZhineng/

(现在使用,人人均可获得300元大奖)


  1. [2022/04/09更新] 由于 tag \texttt{tag} tag 中没有 数论 数学 等标签,所以现在的标签是错误的。 ↩︎

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lvshu · 绿树

非常感谢您的搭讪

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值