Schur不等式(舒尔不等式)

舒尔(Schur\texttt{Schur}Schur)不等式1具体内容Schur\texttt{Schur}Schur 不等式:x,y,zx,y,zx,y,z 为非负实数,rrr 为实数时,下列不等式成立xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0 x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0例子r=0r=0r=0 时(x−y)(
摘要由CSDN通过智能技术生成

舒尔( Schur \texttt{Schur} Schur)不等式1

具体内容

Schur \texttt{Schur} Schur 不等式: x , y , z x,y,z xyz 为非负实数, r r r 为实数时,下列不等式成立
x r ( x − y ) ( x − z ) + y r ( y − x ) ( y − z ) + z r ( z − x ) ( z − y ) ≥ 0 x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0 xr(xy)(xz)+yr(yx)(yz)+zr(zx)(zy)0

例子

  • r = 0 r=0 r=0
    ( x − y ) ( x − z ) + ( y − x ) ( y − z ) + ( z − x ) ( z − y ) ≥ 0 (x-y)(x-z)+(y-x)(y-z)+(z-x)(z-y)\ge 0 (xy)(xz)+(yx)(yz)+(zx)(zy)0 ⇔ x 2 + y 2 + z 2 − x y − y z − z x ≥ 0 \Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge 0 x2+y2+z2xyyzzx0 ⇔ 1 2 { ( x − y ) 2 + ( y − z ) 2 + ( z − x ) 2 } ≥ 0 \Leftrightarrow \frac{1}{2}\{(x-y)^2+(y-z)^2+(z-x)^2\} \ge 0 21{ (xy)2+(yz)2+(zx)2}0
  • r = 1 r=1 r=1
    x ( x − y ) ( x − z ) + y ( y − x ) ( y − z ) + z ( z − x ) ( z − y ) ≥ 0 x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)\ge 0 x(xy)(xz)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
Schur Complement是一种将一个大的矩阵分解为子矩阵的方法,并且可以将不等式化简为矩阵形式。 假设有一个不等式约束条件 $Ax \leq b$,其中 $A$ 是一个 $m \times n$ 的矩阵,$x$ 是一个 $n \times 1$ 的向量,$b$ 是一个 $m \times 1$ 的向量。 我们可以引入一个额外的变量 $s$,并将不等式约束条件转化为一个等式约束条件: $$ Ax + s = b \\ s \geq 0 $$ 其中,$s$ 是一个 $m \times 1$ 的向量,表示松弛变量。 然后,我们可以将 $A$ 分解为如下形式: $$ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} $$ 其中,$A_{11}$ 是一个 $k \times k$ 的矩阵,$A_{12}$ 是一个 $k \times (n-k)$ 的矩阵,$A_{21}$ 是一个 $(m-k) \times k$ 的矩阵,$A_{22}$ 是一个 $(m-k) \times (n-k)$ 的矩阵。 然后,我们可以将 $s$ 分解为如下形式: $$ s = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} $$ 其中,$s_1$ 是一个 $k \times 1$ 的向量,$s_2$ 是一个 $(m-k) \times 1$ 的向量。 现在,我们可以将原始的约束条件转化为如下形式: $$ \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = b $$ 其中,$x_1$ 是一个 $k \times 1$ 的向量,$x_2$ 是一个 $(n-k) \times 1$ 的向量。 现在,我们可以利用 Schur Complement 将约束条件化简为如下形式: $$ A_{11} x_1 + A_{12} x_2 + s_1 = b_1 \\ A_{21} x_1 + A_{22} x_2 + s_2 = b_2 \\ s_1 \geq 0 $$ 其中,$b_1$ 是一个 $k \times 1$ 的向量,$b_2$ 是一个 $(m-k) \times 1$ 的向量。 现在,我们可以利用 $s_1 \geq 0$ 的条件,将约束条件进一步化简为如下形式: $$ \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} s_1 \\ 0 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} $$ 现在,我们可以将上述等式约束条件转化为一个矩阵形式: $$ \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} s_1 \\ 0 \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \end{bmatrix} $$ 其中,$I$ 是一个 $k \times k$ 的单位矩阵。 这样,我们就将原始的不等式约束条件化简为了一个矩阵形式,可以用线性规划算法求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lvshu · 绿树

非常感谢您的搭讪

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值