矩形子数组的最大和

——接上篇。


问题:给定m*n的矩阵,求具有最大和的矩形子数组。

先上暴力算法,求出所有矩形子数组的和,记录其中最大值。思路就是从1*1的最小子矩阵开始(m*n个),到m*n的最大子矩阵(一个)结束,求出每个子矩阵的和,找出最大值。


/** @brief  在m*n的矩阵a中查找最大子矩阵的和
 ** @note   使用一维数组代替二维数组,
 **         元素a[i][j] = a[i*n+j].
 ** @return 最大子数组的和
 ** @author quickSort,
 ** @date   2013/08/10
 **      原创文章,转载请注明出处:  http://blog.csdn.net/fastsort/article/details/9874151 
 */
int maxSubMatrix_BF(int *a, int m, int n)
{
    int mm=NM,sum=0;
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<n;j++)
        {///for all a[i][j]
            for(int ii=i;ii<m;ii++)
            {
                for(int jj=j;jj<n;jj++)
                {
                    sum = 0;
                    for(int ti=i; ti<=ii;ti++)
                        for(int tj=j; tj<=jj;tj++)
                        {
                            sum += a[ti*n+tj];///a[ii][jj] ///sum of a[i][j] -> a[ii][jj]
                        }
                    mm  = max(sum,mm);
                }
            }
        }
    }
    cout<<__FUNCTION__<<": "<<mm<<endl;
    return m;
}


为了使矩形的2维都可以是变量,这里使用一维数组模拟二维矩阵,m*n的矩阵中元素a[i][j]对应于数组中的值就是a[i*n+j]。
其复杂度是多少呢……?一眼看去,6个for循环,OMG。。。像是O(m3n3).
显然,复杂度太高了。。。。


===================================================================================================
结合一维最大子数组,可以这么考虑:二维矩阵在某种程度上可以看做一位数组,而一维数组的每个元素又是一维数组。对于一维数组,最大子数组的和我们已经可以在O(n)内求出,而不需要O(n2)。

这里再回忆一下这两个算法:


平方算法:
///算法1.
///在数组a[n]中找出子数组的最大和
void    maxSum_1(int a[], int n)
{
    int sum=NM,m=NM;//NM是一个很小的负数,例如-99999999.下同
    for(int i=0; i<n; i++)
    {
        sum=0;
        for(int j=i; j<n; j++)
        {
            sum += a[j];
            m = max(m,sum);
        }
    }
    cout<<__FUNCTION__<<" : "<<m<<endl;
}

扫描算法:

///算法2,扫描算法
///在数组a[n]中找出子数组的最大和
void    maxSum_3(int a[], int n)
{
    int maxSoFar=NM, maxEndingHere=NM;
    for(int i=0; i<n; i++)
    {
        maxEndingHere = max(maxEndingHere+a[i], a[i]);
        maxSoFar = max(maxSoFar,maxEndingHere);
    }
    cout<<__FUNCTION__<<" : "<< maxSoFar <<endl;
}


对于行向量(m个),使用普通的平方算法,即算法1,
对于列向量(n个),使用扫描算法,即算法2。
具体代码如下:

/** @brief  在m*n的矩阵a中查找最大子矩阵的和
 ** @note   使用一维数组代替二维数组,
 **         元素a[i][j] = a[i*n+j].
 ** @return 最大子数组的和
 ** @author quickSort,
 ** @date   2013/08/10
 **         原创文章,转载请注明出处:  http://blog.csdn.net/fastsort/article/details/9874151 
 */
int maxSubMatrix(int *a, int m, int n)
{
    int i,j,k;
    int maxSoFar=NM,maxEndingHere;
    int *sum = (int*)malloc(sizeof(int)*n);
    for(i=0;i<m;i++)
    {
        memset(sum,0,sizeof(int)*n);///sum=0
        for(j=i;j<m;j++)///在m维度上使用平平方算法
        {
            maxEndingHere = 0;
            for(k=0;k<n;k++)///在n维度上使用扫描算法
            {
                sum[k] += a[j*n+k];///a[j*n+k]=a[j][k]
                maxEndingHere=max(maxEndingHere+sum[k],sum[k]);
                maxSoFar = max(maxSoFar,maxEndingHere);
            }
        }
    }
    free(sum);
    cout<<__FUNCTION__<<" : "<<maxSoFar<<endl;
    return maxSoFar;
}


其复杂度为O(m2n)。

完整测试代码:


#include    <iostream>
#include    <algorithm>
#include    <cstring>
///
/** @brief  矩形子数组的最大和 完整测试代码
 ** @author quickSort,
 ** @date   2013/08/10
 **         原创文章,转载请注明出处:  http://blog.csdn.net/fastsort/article/details/9874151 
 **         
 */

using namespace std;

int d[] = {-3,-2,-67,-7,-9,-8};
int c[] = {1,-2,3,10,-4,7,2,-5};
int e[] =   /// 2*8 || 4*4
            { 1,-2, 3,10,
             -4, 7, 2,-5,
              1,-8,-5,-9,
              7,10,-6,-20
            };
const int   NM = -99999;

void    maxSum_1(int a[], int n)
{
    int sum=NM,m=NM;
    for(int i=0; i<n; i++)
    {
        sum=0;
        for(int j=i; j<n; j++)
        {
            sum += a[j];
            m = max(m,sum);
        }
    }
    cout<<__FUNCTION__<<" : "<<m<<endl;
}

void    maxSum_3(int a[], int n)
{
    int maxSoFar=NM, maxEndingHere=NM;
    for(int i=0; i<n; i++)
    {
        maxEndingHere = max(maxEndingHere+a[i], a[i]);
        maxSoFar = max(maxSoFar,maxEndingHere);
    }
    cout<<__FUNCTION__<<" : "<< maxSoFar <<endl;
}

template  <typename T>
inline  T   abs(T n)
{
    return  n<0?(-n):n;
}

///-----------------------------------------
/** @brief  在m*n的矩阵a中查找最大子矩阵的和
 ** @note   使用一维数组代替二维数组,
 **         元素a[i][j] = a[i*n+j].
 ** @return 最大子数组的和
 ** @author quickSort,
 ** @date   2013/08/10
 **
 */
int maxSubMatrix(int *a, int m, int n)
{
    int i,j,k;
    int maxSoFar=NM,maxEndingHere;
    int *sum = (int*)malloc(sizeof(int)*n);
    for(i=0;i<m;i++)
    {
        memset(sum,0,sizeof(int)*n);///sum=0
        for(j=i;j<m;j++)
        {
            maxEndingHere = 0;
            for(k=0;k<n;k++)
            {
                sum[k] += a[j*n+k];///a[j*n+k]=a[j][k]
                maxEndingHere=max(maxEndingHere+sum[k],sum[k]);
                maxSoFar = max(maxSoFar,maxEndingHere);
            }
        }
    }
    free(sum);
    cout<<__FUNCTION__<<" : "<<maxSoFar<<endl;
    return maxSoFar;
}
/** @brief  在m*n的矩阵a中查找最大子矩阵的和
 ** @note   使用一维数组代替二维数组,
 **         元素a[i][j] = a[i*n+j].
 ** @return 最大子数组的和
 ** @author quickSort,
 ** @date   2013/08/10
 **
 */
int maxSubMatrix_BF(int *a, int m, int n)
{
    int mm=NM,sum=0;
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<n;j++)
        {///for all a[i][j]
            for(int ii=i;ii<m;ii++)
            {
                for(int jj=j;jj<n;jj++)
                {
                    sum = 0;
                    for(int ti=i; ti<=ii;ti++)
                        for(int tj=j; tj<=jj;tj++)
                        {
                            sum += a[ti*n+tj];///a[ii][jj] ///sum of a[i][j] -> a[ii][jj]
                        }
                    mm  = max(sum,mm);
                }
            }
        }
    }
    cout<<__FUNCTION__<<": "<<mm<<endl;
    return m;
}

int main()
{
    int n   = sizeof(c)/sizeof(int);
    int a[100];
    reset(a,n);
    maxSum_1(a,n);

    maxSum_3(a,n);

    maxSubMatrix(e,4,4);
    maxSubMatrix_BF(e,4,4);
    return 0;
}



结果:
maxSum_1 : 18
maxSum_3 : 18
maxSubMatrix : 17
maxSubMatrix_BF: 17


Process returned 0 (0x0)   execution time : 0.296 s
Press any key to continue.





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值