堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)。
二叉堆的定义
- 二叉堆是完全二叉树或者是近似完全二叉树。
- 二叉堆满足二个特性:
- 1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
- 2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。
namespace HeapSort {
class Solution {
public:
//在arr中0-length范围,以索引parent为根调整成最小堆
//(前提parent左右子树都是最小堆)
void adjustHeap(vector<int> &arr,int parent,int length){
int tmp=arr[parent]; //先保存根parent的值
int p=parent,c=2*p+1; //设置p(parent)和c(child)
while(c<length){
//更新c为值小的c
if(c+1<length && arr[c+1]<arr[c]){
c=c+1;
}
//如果tmp比c大,c值上移到p位置;同时更新p,c的值
if(tmp>arr[c]){
arr[p]=arr[c];
p=c;
c=2*c+1;
}else{ //否则,就是找到tmp的插入位置
break;
}
}
//插入tmp到p位置
arr[p]=tmp;
}
//
void heapSort(vector<int> &arr){
int length=arr.size();
//从最后节点的父节点length/2开始到0,不断调整,达到建堆
for(int i=length/2;i>=0;i--){
adjustHeap(arr, i, length);
}
//每次把堆顶的值和尾部互换,然后尾部之前的新堆调整;如此循环
for(int i=length-1;i>0;i--){
swap(arr[0],arr[i]);
adjustHeap(arr, 0, i);
}
//降序排列改到升序排列
for(int i=0;i<length-i-1;i++){
swap(arr[i],arr[length-i-1]);
}
}
};
class Test {
public:
static void main(){
vector<int> vec{ 23, 65, 12, 3, 8, 76, 345, 90, 21, 75, 34, 61 };
Solution s;
s.heapSort(vec);
}
};
}