from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
from sklearn.datasets import load_iris
iris = load_iris()
y = iris['target']
X = iris['data']
clf=RandomForestClassifier(criterion="gini",max_depth=10,n_estimators=10,oob_score=True)
#n_estimators:它表示建立的树的数量。
#max_depth树的深度。
#n_jobs:超参数表示引擎允许使用处理器的数量。 若值为1,
# 则只能使用一个处理器。 值为-1则表示没有限制。
#oob_score :它是一种随机森林交叉验证方法,即是否采用袋外样本来评估模型的
# 好坏。默认是False。推荐设置为True,因为袋外分数反应了一个模型拟合后的
# 泛化能力。
clf.fit(X,y)
print(clf.feature_importances_)
#feature_importances_ 特征筛选.
print(clf.oob_score_)
print(clf.predict([[0,0,0,0]]))
[0.05486791 0.01641785 0.51583156 0.41288267]
0.94
[0]