海燕

——让暴风雨来得更猛烈些吧!

常用排序算法的动画效果图

1 快速排序 介绍:   快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inne...

2015-03-13 17:49:39

阅读数 519

评论数 0

B树、B-树、B+树、B*树

B树 具体讲解之前,有一点,再次强调下:B-树,即为B树。因为B树的原英文名称为B-tree,而国内很多人喜欢把B-tree译作B-树,其实,这是个非常不好的直译,很容易让人产生误解。如人们可能会以为B-树是一种树,而B树又是一种一种树。而事实上是,B-tree就是指的B树。特此说明。 ...

2015-03-13 08:47:58

阅读数 384

评论数 0

R树空间索引

R树在数据库等领域做出的功绩是非常显著的。它很好的解决了在高维空间搜索等问题。举个R树在现实领域中能够解决的例子吧:查找20英里以内所有的餐厅。如果没有R树你会怎么解决?一般情况下我们会把餐厅的坐标(x,y)分为两个字段存放在数据库中,一个字段记录经度,另一个字段记录纬度。这样的话我们就需要遍历所...

2015-03-13 08:40:29

阅读数 490

评论数 0

Matlab安装使用libsvm

防止别人重复犯一些错误,把网络上看到得东西总结一下,希望对某些人有些帮助。 20120703   一.下载libsvm http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 在libsvm的网站上下载 libsvm-3.12.zip文件,...

2014-11-20 15:59:42

阅读数 493

评论数 0

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才...

2014-11-20 15:27:56

阅读数 610

评论数 0

图形学:名词解释

3D 三维(three dimension)。客观世界中静止的物体都是三维的,在计算机图形学中常在一定的坐标系中用(x,y,z)坐标系列表示物体。 3D modeling 3D建模。用三维坐标来描述物体的形状。在各种计算机图形应用领域中有不同的三维建模方法,用不同的算法来描述这些领域中的...

2014-11-07 10:49:21

阅读数 2809

评论数 0

小谈Elsevier中的LaTex投稿

三修的那篇文章修改的地方不多, 为了让评审人感觉我大刀阔斧的改了很多, 也为了尝试用LaTex投稿, 所以本次我用LaTex编辑了我的revised manuscript, 有些小经验吧,给大家分享。 Elsevier所有的杂志投稿的模板都是一个, ...

2014-09-21 17:25:38

阅读数 6351

评论数 0

各种距离

在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。 本文...

2014-09-17 18:33:11

阅读数 453

评论数 0

VS2010+QT5.1+opencv2.4.5图像界面第一个程序

VS2010+QT5.1+opencv2.4.5图像界面第一个程序 2013年10月08日 ⁄ 综合 ⁄ 共 2600字 ⁄ 字号 小 中 大 ⁄ 评论关闭          QT最近新出了5.1.0版本,最近要用QT编写界面,所以重新下载了新的...

2014-08-10 00:47:32

阅读数 11788

评论数 4

智力风暴(经典智力题)

智力题1(海盗分金币)——海盗分金币 5个海盗抢得100枚金币后,讨论如何进行公正分配。他们商定的分配原则是: (1)抽签确定各人的分配顺序号码(1,2,3,4,5); (2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将...

2014-07-20 19:59:35

阅读数 614

评论数 0

Stanford机器学习---第10讲. 数据降维

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:44:21

阅读数 604

评论数 0

Stanford机器学习---第9讲. 聚类

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:43:19

阅读数 451

评论数 0

Stanford机器学习---第8讲. 支持向量机SVM

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:42:22

阅读数 895

评论数 0

Stanford机器学习---第6讲. 怎样选择机器学习方法、系统

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:38:54

阅读数 516

评论数 0

Stanford机器学习---第7讲. 机器学习系统设计

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:37:24

阅读数 470

评论数 0

Stanford机器学习---第5讲. 神经网络的学习 Neural Networks learning

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:37:01

阅读数 648

评论数 0

Stanford机器学习---第4讲. 神经网络的表示 Neural Networks representation

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:29:30

阅读数 680

评论数 0

Stanford机器学习---第2讲. 多变量线性回归 Linear Regression with multiple variable

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:25:46

阅读数 497

评论数 0

Stanford机器学习---第3讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:24:51

阅读数 1531

评论数 2

Stanford机器学习---第1讲. Linear Regression with one variable

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常...

2014-07-20 19:23:22

阅读数 630

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭