题意:
有n个卡槽,放有体积不同的n个空盒子,每次你可以移动一个空盒子到相邻卡槽,但前提是相邻卡槽若已经有空盒子,那么要移动的空盒子体积必须小于已有的空盒子,问要移动多少步才能使得从左到右,每个卡槽空盒子的体积递增。
解析:
状态压缩,用一个 long long 的状态表示当前所有的状态,每个盘子所在的位置,每个盘子的位置用 7 位二进制表示,总共的状态为
247 ,因为每次盘子只能向左放或者向右放,那么我们从结束的位置开始搜索, bfs 预处理出目标状态到所有状态所需要的最小步数插入 hash 表中(反方向建表),然后对于每个询问 O(1) 回答即可。
my code
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
const int MAXSIZE = 1000003;
const int N = 7;
const int dir[] = {-1, 1};
int goal[] = {1, 2, 3, 4, 5, 6, 7};
int bit[65];
struct Node { ll state; int step; };
int v[N], save[N], n;
struct HashTable {
int head[MAXSIZE], next[MAXSIZE];
ll state[MAXSIZE], dist[MAXSIZE];
int sz;
void clear() {sz = 1; memset(head, 0, sizeof(head)); }
int getHash(ll state) { return state % MAXSIZE; }
bool insert(ll st, ll step) {
int h = getHash(st);
int u = head[h];
while(u) {
if(st == state[u]) return false;
u = next[u];
}
state[sz] = st;
dist[sz] = step;
next[sz] = head[h];
head[h] = sz++;
return true;
}
int find(ll st) {
int h = getHash(st);
int u = head[h];
while(u) {
if(st == state[u]) return dist[u];
u = next[u];
}
return -1;
}
} table[7];
ll getState(int a[]) {
ll state = 0;
for(int i = 0; i < n; i++) state = (state << 7) + (1 << (a[i] - 1));
return state;
}
inline int lowbit(int x) { return x & (-x); };
inline ll getSlot(ll state, int pos) { return ( state >> (7 * pos) ) % 128; }
inline bool move(ll &state, int cur, int next) {
ll x = getSlot(state, cur);
ll curTop = bit[lowbit(x)];
x = getSlot(state, next);
ll nextTop = bit[lowbit(x)];
if(curTop > nextTop && nextTop != 0) return false;
state = state^(1ll << (curTop - 1 + 7 * cur))^(1ll << (curTop - 1 + 7 * next));
return true;
}
void bfs(int id) {
queue<Node> que;
ll endState = getState(goal);
que.push( (Node){endState, 0} );
table[id].insert(endState, 0);
while(!que.empty()) {
Node node = que.front();
que.pop();
for(int i = 0; i < n; i++) {
if(getSlot(node.state, i) == 0)
continue;
for(int d = 0; d < 2; d++) {
int next = i + dir[d];
if(next < 0 || next >= n) continue;
Node newNode = node;
if(move(newNode.state, i, next)) {
newNode.step = node.step + 1;
if(table[id].insert(newNode.state, newNode.step))
que.push(newNode);
}
}
}
}
}
void prepare() {
bit[0] = 0;
for(int i = 0; i < 7; i++) bit[1 << i] = i+1;
for(int i = 0; i < 7; i++) {
n = i+1;
table[i].clear();
bfs(i);
}
}
void discrete() {
for(int i = 0; i < n; i++) save[i] = v[i];
sort(save, save+n);
for(int i = 0; i < n; i++)
v[i] = lower_bound(save, save+n, v[i]) - save + 1;
}
int main() {
prepare();
int T;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", &v[i]);
discrete();
printf("%d\n", table[n-1].find( getState(v) ));
}
return 0;
}