- 博客(7)
- 收藏
- 关注
原创 python3实现链表
尝试用Python实现链表,实现了添加元素append(), 删除元素pop(),获取元素getItem(),设置元素setItem(),打印链表printChain(),输出链表长度getLen()功能,并尝试逐步进行优化,特此记录。1. 基础版本。此版本的主要问题有:(1)没有对index进行验证;(2)定位前一个元素的代码冗余。class ChainCell(): '''本类是链表的基础元素类''' def __init__(self,value=None,nextCel
2021-12-20 19:22:44 1703
原创 维度诅咒及manifold Learning
The Curse of Dimensionality在大数据时代,大量的数据,例如图片,音频等数据都是高维的。一个32*32的图像,可以看做是一个维度为1024(32*32)的实例。从某种程度来说,维数的增多有利于进行分类,这意味着增加了更多的信息。但是当维度增大到一定的程度,就会产生所谓的维度诅咒,即在深度学习领域,随着数据特征的维度增多,训练所需要的数据呈指数型增加的现象。随着维度的增...
2019-04-01 20:15:10 1050
原创 Python搭建全连接神经网络
本人是研一学生一枚,导师做图像方向。这是我的机器学习课程的作业,实现用Python语言搭建一个简单的神经网络模型,只有全连接层,激活函数是sigmoid,有问题欢迎批评指正。#coding=utf-8import numpy as npimport random# 采用西瓜数据集,将离散的性质用数字表示,色泽分为{浅白,青绿,乌黑},分别表示为{0,1,2},根蒂分为{硬挺,稍蜷,...
2018-11-19 16:54:34 3137 2
原创 目标检测数据不均衡问题
数据不均衡的影响:如果数据中存在不均衡的现象,网络模型的训练过程中会偏向于数量较多的目标。举个极端的例子,假设数据集的构成为:car plane 10000 1 如果在loss中不做任何处理,模型完全可以只关注car这一类,plane类由于数量太少,对loss几乎不会产生影响。这样的话,在检测过程中,plane类的准确率将会惨不忍睹。解决方法:数据扩充。这是最...
2018-11-18 20:00:31 5806
原创 R-FCN论文理解
R-FCN:Region-based Fully Convolutional Networks 记录提出R-FCN的理由:faster rcnn的速度太慢,其原因在于region-wise的计算量太大。作者想要采用全卷积的结构,实现所有计算在分类和定位网络上的共享。作者尝试简单的将分类和定位子网的隐藏层去掉,结果并不好,原因就在于分类的平移不变性和定位的平移可变性。平移不变性vs平移可变性...
2018-11-18 19:30:10 309
原创 YOLOv3 ubuntu 配置及训练自己的VOC格式数据集
官网: http://pjreddie.com/yolo/ 相关文章: http://arxiv.org/abs/1506.02640 源代码: https://github.com/pjreddie/darknet.git1. 下载源码git clone https://github.com/pjreddie/darknetcd darknet如果使用CPU,直接make使用GPU训练,需要修...
2018-03-29 22:11:57 34843 38
原创 斯坦福大学吴恩达教授《machine learning》课程学习笔记—— week 1
##斯坦福大学吴恩达教授《machine learning》课程学习笔记—— week 1####前言:本系列是对课程的总结与理解,欢迎批评指正----------
2017-08-25 14:11:59 5716 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人