降水临近预报主流方法详解及Python实现思路
一、数值计算方法
数值计算方法基于物理方程和大气动力学原理,通过求解复杂的偏微分方程组来预测降水。
核心方法:
-  
数值天气预报模型(NWP):
-  
求解大气运动方程、热力学方程、连续方程和水汽方程
 -  
代表性模型:WRF(Weather Research and Forecasting)
 
 -  
 -  
光流法(Optical Flow):
-  
基于像素运动连续性假设
 -  
计算雷达回波图的运动矢量场
 -  
常用算法:Lucas-Kanade, Horn-Schunck
 
 -  
 -  
外推法(Extrapolation):
-  
简单线性外推雷达回波移动趋势
 -  
计算效率高但精度有限
 
 -  
 
Python实现思路:
python
import numpy as np
import cv2
from scipy import ndimage
# 光流法降水预测
def optical_flow_prediction(radar_sequence, pred_steps):
    """
    使用光流法预测未来降水
    :param radar_sequence: 雷达序列 [T, H, W]
    :param pred_steps: 预测步长
    :return: 预测序列 [pred_steps, H, W]
    """
    # 计算最后两帧的光流
    prev = radar_sequence[-2].astype('float32')
    next = radar_sequence[-1].astype('float32')
    flow = cv2.calcOpticalFlowFarneback(prev, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
    
    # 分解为x,y方向
    flow_x, flow_y = flow[..., 0], flow[..., 1]
    
    predictions = []
    last_frame = radar_sequence[-1].copy()
    
    for _ in range(pred_steps):
        # 创建坐标网格
        h, w = last_frame.shape
        y, x = np.mgrid[0:h, 0:w]
        
        # 应用位移场
        remap_x = x + flow_x
        remap_y = y + flow_y
        
        # 边界处理
        remap_x = np.clip(remap_x, 0, w-1)
        remap_y = np.clip(remap_y, 0, h-1)
        
        # 重映射
        predicted = ndimage.map_coordinates(last_frame, [remap_y, remap_x], order=1)
        predictions.append(predicted)
        last_frame = predicted
    
    return np.array(predictions)
 
<

                  
                  
                  
                  
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					1634
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            