降水临近预报主流方法详解及Python实现思路

降水临近预报主流方法详解及Python实现思路

一、数值计算方法

数值计算方法基于物理方程和大气动力学原理,通过求解复杂的偏微分方程组来预测降水。

核心方法:

  1. 数值天气预报模型(NWP):

    • 求解大气运动方程、热力学方程、连续方程和水汽方程

    • 代表性模型:WRF(Weather Research and Forecasting)

  2. 光流法(Optical Flow):

    • 基于像素运动连续性假设

    • 计算雷达回波图的运动矢量场

    • 常用算法:Lucas-Kanade, Horn-Schunck

  3. 外推法(Extrapolation):

    • 简单线性外推雷达回波移动趋势

    • 计算效率高但精度有限

Python实现思路:

python

import numpy as np
import cv2
from scipy import ndimage

# 光流法降水预测
def optical_flow_prediction(radar_sequence, pred_steps):
    """
    使用光流法预测未来降水
    :param radar_sequence: 雷达序列 [T, H, W]
    :param pred_steps: 预测步长
    :return: 预测序列 [pred_steps, H, W]
    """
    # 计算最后两帧的光流
    prev = radar_sequence[-2].astype('float32')
    next = radar_sequence[-1].astype('float32')
    flow = cv2.calcOpticalFlowFarneback(prev, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
    
    # 分解为x,y方向
    flow_x, flow_y = flow[..., 0], flow[..., 1]
    
    predictions = []
    last_frame = radar_sequence[-1].copy()
    
    for _ in range(pred_steps):
        # 创建坐标网格
        h, w = last_frame.shape
        y, x = np.mgrid[0:h, 0:w]
        
        # 应用位移场
        remap_x = x + flow_x
        remap_y = y + flow_y
        
        # 边界处理
        remap_x = np.clip(remap_x, 0, w-1)
        remap_y = np.clip(remap_y, 0, h-1)
        
        # 重映射
        predicted = ndimage.map_coordinates(last_frame, [remap_y, remap_x], order=1)
        predictions.append(predicted)
        last_frame = predicted
    
    return np.array(predictions)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值