转自 :https://blog.csdn.net/theonegis/article/details/50977588
文字理解
内点法属于约束优化算法。约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换成无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。
内点法(罚函数法的一种)的主要思想是:在可行域的边界筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数徒然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“档”在可行域之内了。
数学定义
对于下面的不等式约束的优化问题:
利用内点法进行求解时,构造惩罚函数的一般表达式为
或者
算法步骤
- 取初始惩罚因子 r(0)>0 r(0)>0,允许误差 ϵ>0 ϵ>0;
- 在可行域 D D内选取初始点 X(0) X(0),令 k=1 k=1;
- 构造惩罚函数 φ(X,r(k)) φ(X,r(k)),从 X(k−1) X(k−1)点出发用无约束优化方法求惩罚函数 φ(X,r(k)) φ(X,r(k))的极值点 (X∗,r(k)) (X∗,r(k));
- 检查迭代终止准则:如果满足
∥X∗r(k)−X∗r(k−1)∥≤ϵ1=10−5−10−7 ‖X∗r(k)−X∗r(k−1)‖≤ϵ1=10−5−10−7或者∥φ(X∗,r(k))−φ(X∗,r(k−1))φ(X∗,r(k−1))∥≤ϵ2=10−3−10−4 ‖φ(X∗,r(k))−φ(X∗,r(k−1))φ(X∗,r(k−1))‖≤ϵ2=10−3−10−4则停止迭代计算,并以 (X∗,r(k)) (X∗,r(k))作为原目标函数 f(X) f(X)的约束最优解,否则转入下一步;
- 取 r(k+1)=cr(k) r(k+1)=cr(k), X(0)=X∗r(k) X(0)=X∗r(k), k=k+1 k=k+1,转向步骤3。递减系数 c=0.1−0.5 c=0.1−0.5,通常取0.1。
内点惩罚函数法特点及其应用
- 惩罚函数定义于可行域内,序列迭代点在可行域内不断趋于约束边界上的最优点(这就是称为内点法的原因)
- 只适合求解具有不等式约束的优化问题
内点法求解案例
用内点法求下面约束优化问题的最优解,取迭代初始 X0=[0,0]T X0=[0,0]T,惩罚因子的初始值 r0=1 r0=1,收敛终止条件 ∥Xk−Xk−1∥≤ε ‖Xk−Xk−1‖≤ε, ε=0.01 ε=0.01
- 构造内惩罚函数: φ(X,r)=x21+x21−x1x2−10x1−4x2+60−rln(x1+x2−8) φ(X,r)=x12+x12−x1x2−10x1−4x2+60−rln(x1+x2−8)
- 用解析法求内惩罚函数的极小值
令 ∇φ(X,r)=0 ∇φ(X,r)=0得: 2x1−x2−10−rx1+x2−8=02x2−x1−4−rx1+x2−8=0 2x1−x2−10−rx1+x2−8=02x2−x1−4−rx1+x2−8=0
解得:
X∗1(r)=[13+9+2r√29+9+2r√2]T X1∗(r)=[13+9+2r29+9+2r2]T
X∗2(r)=[13−9+2r√29−9+2r√2]T X2∗(r)=[13−9+2r29−9+2r2]T
∵g(X∗1(r))>0 ∵g(X1∗(r))>0
∴ ∴ 舍去 X∗1(r) X1∗(r)
∵φ(X,r) ∵φ(X,r)为凸函数
∴ ∴ 无约束优化问题的最优解为 X∗(r)=X∗2(r)=[13−9+2r√29−9+2r√2]T X∗(r)=X2∗(r)=[13−9+2r29−9+2r2]T
- 求最优解
当 r0=1 r0=1时, X∗(r0)=(4.84172.8417)T X∗(r0)=(4.84172.8417)T, ∥X∗(r0)−X0∥=5.6140>ε ‖X∗(r0)−X0‖=5.6140>ε
当 r1=0.1 r1=0.1时, X∗(r1)=(4.98342.9834)T X∗(r1)=(4.98342.9834)T, ∥X∗(r1)−X∗(r0)∥=0.2004>ε ‖X∗(r1)−X∗(r0)‖=0.2004>ε
当 r2=0.01 r2=0.01时, X∗(r2)=(4.99832.9983)T X∗(r2)=(4.99832.9983)T, ∥X∗(r2)−X∗(r1)∥=0.0211>ε ‖X∗(r2)−X∗(r1)‖=0.0211>ε
当 r3=0.01 r3=0.01时, X∗(r3)=(4.99982.9998)T X∗(r3)=(4.99982.9998)T, ∥X∗(r3)−X∗(r2)∥=0.0021<ε ‖X∗(r3)−X∗(r2)‖=0.0021<ε
即 X∗(r3) X∗(r3)为最优解