show ad tell:a neuralimge caption generator(cvpr2015)

show ad tell:a neuralimge caption generator(cvpr2015)

这篇论文的贡献有:
1.提出一种端到端的神经网络,可以使用随机梯度下降直接训练
2.结合了两种出色的神经网络,可以分别在额外数据集上预训练
3.在公开数据集上得到了出色的效果

模型:
目标函数:极大化目标句子的似然函数
θ ∗ =   a r g A m a x ∑ ( I , S ) l o g p ( S ∣ I ; θ ) \theta^*=\ arg {}_{A}^{max} \sum_{(I,S)}logp(S|I;\theta) θ= argAmax(I,S)logp(SI;θ)
进一步,应用链式法则对对数似然函数分解,句子S由N个词组成,每一个词对应一个时刻t,故而有:
l o g p ( S ∣ I ) = ∑ t = 0 N l o g p ( S t ∣ I , S 0 , . . . . , S t − 1 ) logp(S|I)=\sum_{t=0}^{N}logp(S_{t}|I,S_{0},....,S_{t-1}) logp(SI)=t=0Nlogp(StI,S0,....,St1)
即对于输入图像I,输出句子S的概率为每一时刻生成对应词St概率的乘积,如果取对数概率,则分解为每一时刻词对数概率的和。

作者发现该公式恰好可以对应到RNN网络结构中,在t时刻,需要计算当前词St的概率,则可以将历史词S0到St−1表示为一个确定长度的隐含层神经元向量ht,同时输入图像xt,在t+1时刻,隐含层向量被更新:
h t + 1 = f ( h t , x t ) h_{t+1}=f(h_{t},x_{t}) ht+1=f(ht,xt)

训练:
现场v现场描述

这里主要指出了需要注意的几个点:

各个时刻的LSTM单元共享一套参数
单词采用one-hot的表示方法
每一个句子前后都有标志词,表示句子的开始和结束
图像只需要输入一次,作者试验过图像输入到每一时刻的lstm中,结果因噪声很容易过拟合
采用对数损失函数: L ( I , S ) = − ∑ t = 1 N l o g p t ( S t ) L(I,S)=-\sum_{t=1}^{N}logp_{t}(S_{t}) L(I,S)=t=1Nlogpt(St)

model:


  import torch
    import torch.nn as nn
    import torchvision.models as models
    from torch.nn.utils.rnn import pack_padded_sequence
    
    
    class EncoderCNN(nn.Module):
        def __init__(self, embed_size):
            """Load the pretrained ResNet-152 and replace top fc layer."""
            super(EncoderCNN, self).__init__()
            resnet = models.resnet152(pretrained=True)   # Constructs a ResNet-152 model. 返回在ImageNet上训练好的模型
            modules = list(resnet.children())[:-1]  # delete the last fc layer.  直接修改需要修改的层
            self.resnet = nn.Sequential(*modules)  # torch.nn.Sequential快速搭建神经网络
            # resnet网络最后一层分类层fc是对1000种类型进行划分
            self.linear = nn.Linear(resnet.fc.in_features, embed_size)  # nn.linear(输入节点数,输出节点数), #resnet.fc.in_features提取fc层中固定的参数,修改最后一层为embed_size
            self.bn = nn.BatchNorm1d(embed_size, momentum=0.01)  #
    
        def forward(self, images):
            """Extract feature vectors from input images."""
            with torch.no_grad():
                features = self.resnet(images)
            features = features.reshape(features.size(0), -1)
            features = self.bn(self.linear(features))
            return features
    
    
    class DecoderRNN(nn.Module):
        def __init__(self, embed_size, hidden_size, vocab_size, num_layers, max_seq_length=20):
            """Set the hyper-parameters and build the layers."""
            super(DecoderRNN, self).__init__()
            self.embed = nn.Embedding(vocab_size, embed_size)
            self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
            self.linear = nn.Linear(hidden_size, vocab_size)
            self.max_seg_length = max_seq_length
    
        def forward(self, features, captions, lengths):
            """Decode image feature vectors and generates captions."""
            embeddings = self.embed(captions)
            embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
            packed = pack_padded_sequence(embeddings, lengths, batch_first=True)
            hiddens, _ = self.lstm(packed)
            outputs = self.linear(hiddens[0])
            return outputs
    
        def sample(self, features, states=None):
            """Generate captions for given image features using greedy search."""
            sampled_ids = []
            inputs = features.unsqueeze(1)
            for i in range(self.max_seg_length):
                hiddens, states = self.lstm(inputs, states)  # hiddens: (batch_size, 1, hidden_size)
                outputs = self.linear(hiddens.squeeze(1))  # outputs:  (batch_size, vocab_size)
                _, predicted = outputs.max(1)  # predicted: (batch_size)
                sampled_ids.append(predicted)
                inputs = self.embed(predicted)  # inputs: (batch_size, embed_size)
                inputs = inputs.unsqueeze(1)  # inputs: (batch_size, 1, embed_size)
            sampled_ids = torch.stack(sampled_ids, 1)  # sampled_ids: (batch_size, max_seq_length)
            return sampled_ids

train:

import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
from data_loader import get_loader
from build_vocab import Vocabulary
from model import EncoderCNN, DecoderRNN
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms

# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def main(args):
    # Create model directory
    if not os.path.exists(args.model_path):
        os.makedirs(args.model_path)

    # Image preprocessing, normalization for the pretrained resnet
    transform = transforms.Compose([
        transforms.RandomCrop(args.crop_size),           # randomcrop一个随机的位置进行裁剪
        transforms.RandomHorizontalFlip(),               # randomhorizantal 以0.5的概率水平翻转给定的PIL图像
        transforms.ToTensor(),                           # totensor :convert a PIL image to tensor (H*W*C) in range [0,255] to a torch.Tensor(C*H*W) in the range [0.0,1.0]
        transforms.Normalize((0.485, 0.456, 0.406),      # 用均值和标准差对张量图像进行归一化
                             (0.229, 0.224, 0.225))])

    # Load vocabulary wrapper
    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    # Build data loader
    data_loader = get_loader(args.image_dir, args.caption_path, vocab,
                             transform, args.batch_size,
                             shuffle=True, num_workers=args.num_workers)

    # Build the models
    encoder = EncoderCNN(args.embed_size).to(device)
    decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device)

    # Loss and optimizer
    criterion = nn.CrossEntropyLoss()
    params = list(decoder.parameters()) + list(encoder.linear.parameters()) + list(encoder.bn.parameters())
    optimizer = torch.optim.Adam(params, lr=args.learning_rate)

    # Train the models
    total_step = len(data_loader)
    for epoch in range(args.num_epochs):
        for i, (images, captions, lengths) in enumerate(data_loader):

            # Set mini-batch dataset
            images = images.to(device)
            captions = captions.to(device)
            targets = pack_padded_sequence(captions, lengths, batch_first=True)[0]

            # Forward, backward and optimize
            features = encoder(images)
            outputs = decoder(features, captions, lengths)
            loss = criterion(outputs, targets)
            decoder.zero_grad()
            encoder.zero_grad()
            loss.backward()  # 反向传播求梯度
            optimizer.step()  # 更新所有参数

            # Print log info
            if i % args.log_step == 0:
                print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
                      .format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item())))

                # Save the model checkpoints
            if (i + 1) % args.save_step == 0:
                torch.save(decoder.state_dict(), os.path.join(
                    args.model_path, 'decoder-{}-{}.ckpt'.format(epoch + 1, i + 1)))
                torch.save(encoder.state_dict(), os.path.join(
                    args.model_path, 'encoder-{}-{}.ckpt'.format(epoch + 1, i + 1)))


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default='models/', help='path for saving trained models')
    parser.add_argument('--crop_size', type=int, default=224, help='size for randomly cropping images')
    parser.add_argument('--vocab_path', type=str, default='data/vocab.pkl', help='path for vocabulary wrapper')
    parser.add_argument('--image_dir', type=str, default='data/resized2014', help='directory for resized images')
    parser.add_argument('--caption_path', type=str, default='data/captions_train2014.json',
                        help='path for train annotation json file')
    parser.add_argument('--log_step', type=int, default=10, help='step size for prining log info')
    parser.add_argument('--save_step', type=int, default=1000, help='step size for saving trained models')

    # Model parameters
    parser.add_argument('--embed_size', type=int, default=256, help='dimension of word embedding vectors')
    parser.add_argument('--hidden_size', type=int, default=512, help='dimension of lstm hidden states')
    parser.add_argument('--num_layers', type=int, default=1, help='number of layers in lstm')

    parser.add_argument('--num_epochs', type=int, default=5)
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--num_workers', type=int, default=2)
    parser.add_argument('--learning_rate', type=float, default=0.001)
    args = parser.parse_args()
    print(args)
    main(args)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值