MAX子数组

给定一整数数组,找出其中和最大的子数组

输入一个整型数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。

如:输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18

#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <math.h>
using namespace std;
#define ARYSIZE 10 //数组大小
#define MIN -30
#define MAX 30
void main()
{
	int ary[ARYSIZE];
	srand((unsigned)time(NULL));//产生随机种子
	for(int i=0;i<ARYSIZE;i++)
	{
		ary[i]=MIN+rand()%(MAX+abs(MIN)+1);
		cout<<ary[i]<<" ";
	}
	cout<<endl;
	int max=0;//保存最大和
	int curSum=0;//保存当前和
	int curStart=0;//当前和的起始位置
	int start=0;//最大和的起始位置
	int end=0;//最大和的终止位置
	for(int i=0;i<ARYSIZE;i++)
	{
		if(i==0)
		{
			curSum=max=ary[i];
			continue;
		}
			
		if(curSum<0)
		{
			curSum=0;//与负数相加,和会减小,所以抛弃以前的和
			curStart=i;
		}
		//最大值已经被保存下来,所以请大胆的继续往前加
		curSum += ary[i];
		//当前和被保存为最大值,记录下它的起始位置和结束位置
		if(curSum>max)
		{
			max=curSum;
			start=curStart;
			end=i;
		}
	}
	
	cout<<"和最大的子数组为:"<<endl;
	for(int i=start;i<=end;i++)
	{
		cout<<ary[i]<<" ";
	}
	cout<<"= "<<max;
	cin.get();
}


 

 

《编程之美》一书上有一道题:给定一个由N个整数元素组成数组a,写一个函数在其中找出连续子数组和的最大值。例如给定数组为{1, -2, 3, 5, -1, 2},则和最大的连续子数组是{3, 5, -1, 2},函数返回值是9。

      这是一道典型的动态规划问题,书中循序渐进地通过分析给出了一个时间复杂度为O(N)空间复杂度为O(1)的最优解。我在面试时碰到了这道题的一道有趣变体,即同样给定一个数组,写一个在其中找出不连续子数组和的最大值,也就是说子数组里的任意相邻的两个元素,在原数组里都必须是不相邻的才行。同样以数组 {1, -2, 3, 5, -1, 2}为例,则和最大的不连续子数组是{1, 5, 2},函数返回值是8。

      显然,最直接的思路我们可以采用穷举法,对于此类寻找符合条件的子数组的问题,无非就是对原数组上每位元素是否属于子数组做一次遍历判断。由于每位元素都有属于和不属于子数组两种可能性,那么穷举的时间复杂度为O(2^N)。即使考虑“不连续”这个限制条件,即某位元素被选中属于子数组后,则其相邻元素就一定不能被选中,也对时间复杂度的数量级不会有太多影响。因此很明显,这绝对是个愚蠢的答案……

      从《编程之美》一题中得到启发,我们是不是也可以用动态规划的方法来解这道题呢?假设从原数组a第i位开始的最大不连续子数组和为m[ i ],那么它的值有两种可能,一种是当前元素a[ i ]与隔一位上子问题解m[ i+2 ]之和(由不连续性质决定),另一种是不包含当前元素而直接等于前一位上子问题解m[ i+1 ],那么我们可以写出递推公式为:m[ i ] = max(a[ i ] + m[ i+2 ], m[ i+1 ])。

      等等,也许你要说,好像这个递推式有漏洞啊,因为前一位上的解m[ i+1 ]本身就有可能是包含或不包含a[ i+1 ],假如m[ i+1 ]不包含a[ i+1 ],那么岂不是还要考虑a[ i ]+m[ i+1 ]这种可能性呢?

      这个递推式真的经不起推敲吗?我们不妨重新整理一下思路:由于原数组上每一元素都有取与不取两种可能,那么也就对应有包含和不包含该元素的两个子数组的最大和。对于原数组a中第i位上的元素,假设包含a[ i ]元素的子数组最大和为s[ i ],而不包含元素a[ i ]的子数组最大和为ns[ i ],因此所要求的不连续子数组最大和m[ i ] = max(s[ i ], ns[ i ])。那么根据题意我们可以整理出递推关系如下:

    s[ i ] = max(a[ i ] + ns[ i+1 ], a[ i ] + m[ i+2 ])

    ns[ i ] = m[ i+1 ]

    m[ i ] = max(a[ i ] + ns[ i+1 ], a[ i ] + m[ i+2 ], m[ i+1 ])

      有趣的地方在于ns[ i ] = m[ i+1 ]这一项上,根据它我们可以得到ns[ i+1 ] = m(i+2),也就是说假如m[ i+1 ]不包含a[ i+1 ]的话,那么它一定等于m[ i+2 ],所以a[ i ]+ns[ i+1 ]等价于a[ i ] + m[ i+2 ],递推式m[ i ] = max(a[ i ] + m[ i+2 ], m[ i+1 ])是正确的!

      从《编程之美》给出的解法中得到启发,我们也只需要使用两个变量来记录m[ i+2 ]和m[ i+1 ]的值就行了,而且同样只需要O(N)的复杂度就可以解这道题,代码如下:

int maxsum(int* a, int n)
{
    int m2 = 0;
    int m1 = a[ n-1 ];
    for(int i = n - 2; i >= 0; i--)
    {
        if(m2 < 0) m2 = 0;  //处理最后一位为负数或全为负数的情况
        int tmp = m1;
        m1 = max(a[ i ] + m2, m1);
        m2 = tmp;
    }
    return m1;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值