自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

左超

NeverGiveUpEasily!

  • 博客(4)
  • 收藏
  • 关注

转载 特征向量物理意义

什么是特征向量,特征值,矩阵分解<br /><br />[1. 特征的数学意义]<br />        我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换。我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y')。这里的矩阵M代表一种线性变换:拉伸,平移,旋转。那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(

2011-01-27 23:46:00 2063

转载 特征值 特征向量 奇异值分解 SVD

特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量,因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,那么变换的效果是什么呢?这当然与方阵的构造有密切关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度,这时我们可以问一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换

2011-01-27 23:45:00 3310

原创 关于奇异值分解的一些讨论

<br />矩阵的奇异值分解和特征值分解的异同<br /> <br />简单的讲 所有的矩阵都可以进行奇异值分解,不管其是否是方阵以及对称矩阵。当所给的矩阵是对称的方阵,A(T)=A,二者的结果是相同的。也就是说对称矩阵的特征值分解是所有奇异值分解的一个特例。<br />但是二者还是存在一些小的差异,奇异值分解需要对奇异值从大到小的排序,而且全部是大于等于零。<br />在应用层面上,信号处理中常常遇到一些降维,主分量分析等等的处理需要用到奇异值分解。一般来讲,奇异值分解应用的范围比较广泛。<br />比如

2011-01-16 12:40:00 3579 1

转载 矩阵奇异值分解SVD用于图像压缩的要点

<br />矩阵奇异值分解:对于矩阵A,存在酉矩阵P和Q,使得PHAQ=D,其中D为对角线矩阵,其对角线上的元素为矩阵A的奇异值;并且有A=PDQH。<br />       奇异值分解用于图像压缩的思路:从上面的理论中,我们可以看出D矩阵是稀疏矩阵,相对于原始矩阵(图像)A,D的有效数据少的多,而对于稀疏矩阵我们已经有很多压缩存储算法。然后,仅仅根据这个知识是无法直接把奇异值分解用于图像压缩的,因为在使用矩阵D来恢复矩阵A时,需要知道P和Q的内容,这样,反而增加了需要存储或传输的数据量,根本起不到压缩的作

2011-01-16 09:30:00 3961

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除