【数学二】一元函数微分学-导数的计算-分段函数求导数、有关导数的重要结论

考试要求

1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3、了解高阶导数的概念,会求简单函数的高阶导数.
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5、理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.
6、掌握用洛必达法则求未定式极限的方法.
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法, 掌握函数最大值和最小值的求法及其应用.
8、会用导数判断函数图形的凹凸性(注:在区间(a.b)内,设函数 f ( x ) f(x) f(x)具有二阶导数当 f ′ ′ ( x ) > 0 f^{''}(x)>0 f′′(x)>0时, f ( x ) f(x) f(x)的图形是凹的;当 f ′ ′ ( x ) > 0 f^{''}(x)>0 f′′(x)>0时, f ( X ) f(X) f(X)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

导数的计算
分段函数求导数

分段函数求导数一般按如下步骤:
1、对于定义域内每个分段区间内的函数按常规求导法则求出导数(不含分段点)
2、对于每个分段点处的导数,要按导数定义或左、右导数定义进行计算,从而判断函数在分段点处是否可导及导数值
3、写出最后的导数结果

练习1:设 f ( x ) = { x − 1 , x ≤ 0 2 x 2 − 1 , 0 < x ≤ 1 4 x − 3 , x > 0 f(x)=\begin{cases} x-1,\quad x\le 0 \\ \quad \\ 2x^2-1,\quad 0<x \le1 \\ \quad \\ 4x-3, \quad x>0\end{cases} f(x)= x1,x02x21,0<x14x3,x>0 ,求 f ′ ( x ) f^{'}(x) f(x)

知识点:
1、定理 函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导的充要条件是左右导数存在且相等,即 f ′ ( x 0 ) ⇔ ( f + ′ ( x 0 ) = f − ′ ( x 0 ) f^{'}(x_0) \Leftrightarrow (f^{'}_{+}(x_0)=f^{'}_{-}(x_0) f(x0)f+(x0)=f(x0)

f ′ ( x ) = { 1 4 x 4 分段点为 x = 0 , 1 f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 ⇒ f − ′ ( 0 ) = lim ⁡ x → 0 − x − 1 − ( − 1 ) x − 0 = 1 , f + ′ ( 0 ) = lim ⁡ x → 0 + 2 x 2 − 1 − ( − 1 ) x − 0 = 0 f ′ ( 1 ) = lim ⁡ x → 1 f ( x ) − f ( 1 ) x − 0 ⇒ f − ′ ( 1 ) = lim ⁡ x → 1 − 2 x 2 − 1 − 1 x − 1 = 4 , f + ′ ( 1 ) = lim ⁡ x → 1 + 4 x − 3 − 1 x − 1 = 4 f + ′ ( 0 ) ≠ f − ′ ( 0 ) ⇒ f ( x ) 在 x = 0 导数不存在 f + ′ ( 1 ) = f − ′ ( 1 ) ⇒ f ( x ) 在 x = 1 导数存在 f ′ ( x ) = { 1 , x < 0 4 x , 0 < x < 1 4 , x ≥ 1 f^{'}(x)=\begin{cases} 1 \\ \quad \\ 4x \\ \quad \\ 4\end{cases} \\ \quad \\ 分段点为x=0,1 \\ \quad \\ f^{'}(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}\Rightarrow f^{'}_{-}(0)=\lim_{x\to 0^-}\frac{x-1-(-1)}{x-0}=1,f^{'}_{+}(0)=\lim_{x\to 0^+}\frac{2x ^2-1-(-1)}{x-0}=0 \\ \quad \\ f^{'}(1)=\lim_{x\to 1}\frac{f(x)-f(1)}{x-0}\Rightarrow f^{'}_{-}(1)=\lim_{x\to 1^-}\frac{2x^2-1-1}{x-1}=4,f^{'}_{+}(1)=\lim_{x\to 1^+}\frac{4x-3-1}{x-1}=4 \\ \quad \\ f^{'}_{+}(0)\ne f^{'}_{-}(0)\Rightarrow f(x)在x=0导数不存在 \\ \quad \\ f^{'}_{+}(1)= f^{'}_{-}(1)\Rightarrow f(x)在x=1导数存在 \\ \quad \\ f^{'}(x)=\begin{cases} 1,\quad x<0 \\ \quad \\ 4x ,\quad 0<x<1\\ \quad \\ 4,\quad x\ge 1\end{cases} f(x)= 14x4分段点为x=0,1f(0)=x0limx0f(x)f(0)f(0)=x0limx0x1(1)=1,f+(0)=x0+limx02x21(1)=0f(1)=x1limx0f(x)f(1)f(1)=x1limx12x211=4,f+(1)=x1+limx14x31=4f+(0)=f(0)f(x)x=0导数不存在f+(1)=f(1)f(x)x=1导数存在f(x)= 1,x<04x,0<x<14,x1

练习2:设 f ( x ) = { x 2 cos ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\begin{cases} x^2\cos \frac{1}{x},\quad x\ne 0 \\ \quad \\ 0,\quad x=0 \end{cases} f(x)= x2cosx1,x=00,x=0 ,求 f ′ ( x ) f^{'}(x) f(x)

知识点:
1、无穷小和有界量的乘积仍为无穷小

f ′ ( x ) = { 2 x cos ⁡ 1 x + x 2 ( − sin ⁡ 1 x ) ( − 1 x 2 ) = 2 x cos ⁡ 1 x + sin ⁡ 1 x 0 分段点 x = 0 f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 x 2 cos ⁡ 1 x x − 0 = lim ⁡ x → 0 x cos ⁡ 1 x = 0 f ′ ( x ) = { 2 x cos ⁡ 1 x + sin ⁡ 1 x , x ≠ 0 0 , x = 0 f^{'}(x)=\begin{cases} 2x\cos \frac{1}{x} +x^2(-\sin \frac{1}{x})(-\frac{1}{x^2})= 2x\cos \frac{1}{x} +\sin \frac{1}{x}\\ \quad \\ 0 \end{cases} \\ \quad \\ 分段点x=0\\ \quad \\ f^{'}(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{x^2\cos \frac{1}{x}}{x-0}=\lim_{x\to 0}x\cos \frac{1}{x}=0 \\ \quad \\ f^{'}(x)=\begin{cases} 2x\cos \frac{1}{x} +\sin \frac{1}{x},\quad x \ne 0\\ \quad \\ 0,\quad x=0 \end{cases} f(x)= 2xcosx1+x2(sinx1)(x21)=2xcosx1+sinx10分段点x=0f(0)=x0limx0f(x)f(0)=x0limx0x2cosx1=x0limxcosx1=0f(x)= 2xcosx1+sinx1x=00,x=0

有关导数的重要结论

1、可导的函数的导数是函数
2、可导的函数的导数是函数
3、可导的周期函数的导数仍是周期函数,且周期不变

练习1:设 f ( x ) f(x) f(x)可导,且对任意的 x x x,都有 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),若 f ′ ( − x 0 ) = − k ≠ 0 f^{'}(-x_0)=-k\ne 0 f(x0)=k=0,则 f ′ ( x 0 ) = f^{'}(x_0)= f(x0)=?

知识点:
1、可导的函数的导数是函数
2、 设函数 y = f ( x ) y=f(x) y=f(x)的定义域D关于原点对称(即若 x ∈ D x\in D xD,则有 − x ∈ D -x \in D xD) ,对于任一 x ∈ D x \in D xD ,如果恒有 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)则称 f ( x ) f(x) f(x) D D D 上的偶函数;如果恒有 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)则称 f ( x ) f(x) f(x) D D D 上的奇函数

由题意可知: f ( x ) 可导,且 f ( x ) 是偶函数,则 f ′ ( x ) 是奇函数 f ′ ( − x ) = − f ′ ( x ) ⇒ f ′ ( − x 0 ) = − f ′ ( x 0 ) = − k 即: f ′ ( x 0 ) = k 由题意可知:f(x)可导,且f(x)是偶函数,则f^{'}(x)是奇函数 \\ \quad \\ f^{'}(-x)=-f^{'}(x) \Rightarrow f^{'}(-x_0)=- f^{'}(x_0)=-k \\ \quad \\ 即:f^{'}(x_0)=k 由题意可知:f(x)可导,且f(x)是偶函数,则f(x)是奇函数f(x)=f(x)f(x0)=f(x0)=k即:f(x0)=k

练习2:设函数 f ( x ) f(x) f(x)为可导的奇函数,且曲线 y = f ( x ) 在点 ( x 0 , f ( x 0 ) ) y=f(x)在点(x_0,f(x_0)) y=f(x)在点(x0,f(x0))处的法线与直线 2 x + 3 y − 1 = 0 2x+3y-1=0 2x+3y1=0 平行,则 f ′ ( − x 0 ) = f^{'}(-x_0)= f(x0)=?

知识点:
1、可导的函数的导数是函数
2、 设函数 y = f ( x ) y=f(x) y=f(x)的定义域D关于原点对称(即若 x ∈ D x\in D xD,则有 − x ∈ D -x \in D xD) ,对于任一 x ∈ D x \in D xD ,如果恒有 f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)则称 f ( x ) f(x) f(x) D D D 上的偶函数;如果恒有 f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)则称 f ( x ) f(x) f(x) D D D 上的奇函数
3、如果 f ′ ( x 0 ) ≠ 0 f^{'}(x_0)\ne 0 f(x0)=0,则曲线 y = f ( x ) 在点 ( x 0 , f ( x 0 ) ) y=f(x)在点(x_0,f(x_0)) y=f(x)在点(x0f(x0))此处的法线方程为: y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) y-f(x_0)=-\frac{1}{f^{'}(x_0)}(x-x_0) yf(x0)=f(x0)1(xx0)

由题意可知: f ( x ) 的导数 f ′ ( x ) 是偶函数 ⇒ f ′ ( − x ) = f ′ ( x ) 由曲线 y = f ( x ) 在点 ( x 0 , f ( x 0 ) ) 处的法线与直线 2 x + 3 y − 1 = 0 平行可知 f ′ ( x 0 ) = − 1 − 2 3 = 3 2 f ′ ( − x 0 ) = f ′ ( x 0 ) = 3 2 由题意可知:f(x)的导数f^{'}(x)是偶函数 \Rightarrow f^{'}(-x)=f^{'}(x) \\ \quad \\ 由曲线y=f(x)在点(x_0,f(x_0))处的法线与直线2x+3y-1=0 平行可知 \\ \quad \\ f^{'}(x_0)=-\frac{1}{-\frac{2}{3}}=\frac{3}{2}\\ \quad \\ f^{'}(-x_0)=f^{'}(x_0)=\frac{3}{2} 由题意可知:f(x)的导数f(x)是偶函数f(x)=f(x)由曲线y=f(x)在点(x0,f(x0))处的法线与直线2x+3y1=0平行可知f(x0)=321=23f(x0)=f(x0)=23

练习3:设周期函数 f ( x ) 在 ( − ∞ , + ∞ ) f(x)在(-\infty,+\infty) f(x)(,+) 内可导,周期为4,又 lim ⁡ x → 0 f ( 1 ) − f ( 1 − x ) 2 x = − 1 \lim_{x\to 0}\frac{f(1)-f(1-x)}{2x}=-1 limx02xf(1)f(1x)=1 ,则曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 5 , f ( 5 ) ) (5,f(5)) (5,f(5))处的切线斜率为?

知识点:
1、可导的周期函数的导数仍是周期函数,且周期不变
2、若存在实数 T > 0 T>0 T>0,对于任意 x x x,恒有 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x),则称 y = f ( x ) y=f(x) y=f(x)为以 T T T为周期的周期函数。使得上述关系式成立的最小正数 T T T称为 f ( x ) f(x) f(x)最小正周期,简称为函数 f ( x ) f(x) f(x)的周期。
3、设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0的某邻域内有定义,如果极限 lim ⁡ △ x → 0 △ y △ x = lim ⁡ △ x → 0 f ( x 0 + △ x ) − f ( x 0 ) △ x \lim_{\triangle x \to 0 } \frac{\triangle y}{\triangle x}=\lim_{\triangle x \to 0 }\frac{f(x_0+\triangle x)-f(x_0)}{\triangle x} x0limxy=x0limxf(x0+x)f(x0)存在,则称 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可导,并称此极限值为 f ( x ) f(x) f(x) x 0 x_0 x0处的导数,记为 f ′ ( x 0 ) f^{'}(x_0) f(x0) y ′ ∣ x = x 0 或 d y d x ∣ x = x 0 y^{'}|_{x=x_0}或\frac{dy}{dx}|_{x=x_0} yx=x0dxdyx=x0.如果上述极限不存在,则称 f ( x ) f(x) f(x) x 0 x_0 x0处不可导。

由题意可知: f ( x ) 的导数 f ′ ( x ) 的周期为 4 ⇒ f ′ ( x ) = f ′ ( x + 4 ) 由导数定义可知: lim ⁡ x → 0 f ( 1 ) − f ( 1 − x ) 2 x = 1 2 lim ⁡ x → 0 f ( 1 − x ) − f ( 1 ) − x = 1 2 f ′ ( 1 ) = − 1 f ′ ( 1 ) = f ′ ( 1 + 4 ) = − 2 由题意可知:f(x)的导数f^{'}(x)的周期为4 \Rightarrow f^{'}(x)=f^{'}(x+4) \\ \quad \\ 由导数定义可知: \lim_{x\to 0}\frac{f(1)-f(1-x)}{2x}=\frac{1}{2}\lim_{x\to 0}\frac{f(1-x)-f(1)}{-x}=\frac{1}{2}f^{'}(1)=-1 \\ \quad \\ f^{'}(1)=f^{'}(1+4)=-2 由题意可知:f(x)的导数f(x)的周期为4f(x)=f(x+4)由导数定义可知:x0lim2xf(1)f(1x)=21x0limxf(1x)f(1)=21f(1)=1f(1)=f(1+4)=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值