A. 2048 Game
题意:给出一些数这些数都是2的指数,每次都可以任意选两个数相加,操作次数不限,问最后能否得到 2048
思路:转化成是2的多少次方存起来 然后递归查询
#include<bits/stdc++.h>
using namespace std;
int find(int x)
{
int ans=0;
while(x!=1)
{
x>>=1;
ans++;
}
return ans;
}
int main()
{
int t;
cin>>t;
while(t--)
{
map<int,int>mp;
int n;
cin>>n;
int flag=0;
for(int i=1;i<=n;i++)
{
int x;
cin>>x;
if(x>2048)
{
continue;
}
else if(x==2048)
{
flag=1;
}
else
{
int w=find(x);
mp[w]++;
}
}
if(flag==1)
{
cout<<"YES"<<endl;
continue;
}
for(int i=0;i<=10;i++)
{
int x=mp[i]/2;
mp[i+1]+=x;
}
if(mp[11])
{
cout<<"YES"<<endl;
}
else
{
cout<<"NO"<<endl;
}
}
return 0;
}
B. Knights
题意:有两种骑士可以相互攻击 他们的位置必须满足
- |x1−x2|=2 and |y1−y2|=1
- |x1−x2|=1 and |y1−y2|=2.
问最多可以攻击多少次。 随便画画大概就能猜到规律
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
char c;
if(i&1)
{
c='W';
}
else
{
c='B';
}
for(int j=1;j<=n;j++)
{
cout<<c;
if(c=='W')
c='B';
else
c='W';
}
cout<<endl;
}
return 0;
C. Perfect Team
简单数学题
#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
int c,m,x;
cin>>c>>m>>x;
if(c==0||m==0)
{
cout<<0<<endl;
continue;
}
int minn=min(min(c,m),x);
if(minn==x)
{
int min1=min(c-x,m-x);
int ans=minn+min(((c-x)+(m-x))/3,min1);
cout<<ans<<endl;
}
else
{
cout<<minn<<endl;
}
}
return 0;
}
D. Make The Fence Great Again
题意:给n个木块的起始高度,还有每个木块加一高度的代价,求使每个木块相邻两边高度不同的最小代价。
思路:设f[i][j],表示判断到第i个木块,第i个木块增高j所需的最小代价,可知,每个木块因为相邻两个木块,所以每个木块只需要增高0,1,2这三种可能,做法就是相当于暴力枚举加记忆化了。
#include<bits/stdc++.h>
#define ll long long
#define N 0x3f3f3f3f3f3f3f // 需要开大点
using namespace std;
ll a[300010],v[300010];
ll f[300010][3];
int main()
{
int t;
scanf("%d",&t);
//cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%lld%lld",&a[i],&v[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<3;j++)
{
f[i][j]=N;
}
}
f[1][0]=0;
f[1][1]=1ll*v[1];
f[1][2]=1ll*2*v[1];
for(int i=2;i<=n;i++)
{
for(int j=0;j<3;j++)
{
for(int k=0;k<3;k++)
{
if(a[i-1]+j!=a[i]+k)
{
f[i][k]=min(f[i][k],f[i-1][j]+k*v[i]);
}
}
}
}
printf("%lld\n",min(f[n][0],min(f[n][1],f[n][2])));
}
return 0;
}
E.Game With String
题意:
给出一个01序列,两个人来玩博弈游戏,博弈规则如下:
- A为先手,B为后手,给出a,b,b<a,A能够将a个连续的a个0变为1;B能够将连续的b个0变为1。
- 当有一个人无法操作时,则输掉这场游戏。
现给出长度不超过10^5的序列,问谁胜谁负。
思路:
感觉很有意思的一道博弈题,跟平时遇到的博弈题不一样。感觉不一样就在于游戏规则对于双方来说都不一样,好像是非平衡博弈?
首先有一个很重要的观察:
- 如果存在一段连续的0的长度x满足:b≤x<a,那么B必胜。
证明 B会比A多一次机会。 A能搞的B也能搞;若出现一个局面,B必须用掉这一次机会,那么说明其它位置肯定不存在一段长度大于等于b了,自然之后A不能再搞了。那么现在考虑,在什么样的局面下,B能够构造出上述观察。思考可以发现,当存在两段连续0的个数都大于等于2b时,B必然可以构造出这样一段,当然原来就有这么一段就不说了。
发现剩下的情况个数很少,我们直接分类讨论:
- 当不存在任何一个段长度大于等于2b时,显然此时所有合法段的长度都是不小于a的(前面的情况已经排除)。那么此时的胜负就根据合法段的奇偶个数。
- 当仅存在一个时,既然只有一段,直接枚举A在该段上的所有选择,看看存不存在必胜状态就行啦。A开始必然在这段区间上面选,不然B可以随便构造出满足“观察”的段。 来自博主
#include<bits/stdc++.h>
using namespace std;
void A()
{
cout<<"YES"<<endl;
}
void B()
{
cout<<"NO"<<endl;
}
int main()
{
int t;
cin>>t;
while(t--)
{
vector<int>v;
int a,b;
cin>>a>>b;
string s;
cin>>s;
int cnt=0;
for(int i=0;i<s.size();i++)
{
if(s[i]=='.')
{
cnt++;
}
else
{
if(cnt)
{
v.push_back(cnt);
cnt=0;
}
}
}
if(cnt)
{
v.push_back(cnt);
cnt=0;
}
int f=0;
int len;
for(int i=0;i<v.size();i++)
{
if(v[i]>=2*b)
cnt++,len=v[i];
if(v[i]>=b&&v[i]<a)
{
f=1;
}
}
if(f||cnt>=2)
{
B();
continue;
}
if(cnt==0)
{
for(int i=0;i<v.size();i++)
{
if(v[i]>=a)++cnt;
}
if(cnt&1)
A();
else
B();
continue;
}
cnt=0;
for(int i=0;i<v.size();i++)
{
if(v[i]>=a&&v[i]!=len)
{
cnt++;
}
}
int flag=0;
for(int l=1;l+a-1<=len;l++)
{
int r=l+a-1;
int left=l-1,right=len-r;
if(left>=2*b||right>=2*b)
continue;
if((left>=b&&left<a)||(right>=b&&right<a))
{
continue;
}
int temp=cnt+(left>=a)+(right>=a);
if(temp%2==0)
{
flag=1;
A();
break;
}
}
if(!flag)
{
B();
}
}
return 0;
}