Educational Codeforces Round 73 (Rated for Div. 2) ABCDE

传送门

A. 2048 Game

题意:给出一些数这些数都是2的指数,每次都可以任意选两个数相加,操作次数不限,问最后能否得到 2048

思路:转化成是2的多少次方存起来 然后递归查询

#include<bits/stdc++.h>
using namespace std;
int find(int x)
{
	int ans=0;
	while(x!=1)
	{
		x>>=1;
		ans++;
	}
	return ans;
}
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		map<int,int>mp;
		int n;
		cin>>n;
		int flag=0;
		for(int i=1;i<=n;i++)
		{
			int x;
			cin>>x;
			if(x>2048)
			{
				continue;
			}
			else if(x==2048)
			{
				flag=1;
			}
			else
			{
				int w=find(x);
				mp[w]++;
			}
		}
		if(flag==1)
		{
			cout<<"YES"<<endl;
			continue;
		}
		for(int i=0;i<=10;i++)
		{
			int x=mp[i]/2;
			mp[i+1]+=x;
		}
		if(mp[11])
		{
			cout<<"YES"<<endl;
		}
		else
		{
			cout<<"NO"<<endl;
		}
	}
	return 0;
}

B. Knights

题意:有两种骑士可以相互攻击  他们的位置必须满足

  • |x1−x2|=2 and |y1−y2|=1
  • |x1−x2|=1 and |y1−y2|=2.

问最多可以攻击多少次。 随便画画大概就能猜到规律

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		char c; 
		if(i&1)
		{
			c='W';
		}
		else
		{
			c='B';
		}
		for(int j=1;j<=n;j++)
		{
			cout<<c;
			if(c=='W')
			c='B';
			else
			c='W';
		}
		cout<<endl;
	}
	return 0;

C. Perfect Team

简单数学题

    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
    	int t;
    	cin>>t;
    	while(t--)
    	{
    		int c,m,x;
    		cin>>c>>m>>x;
    		if(c==0||m==0)
    		{
    			cout<<0<<endl;
    			continue;
    		}
    		int minn=min(min(c,m),x);
    		if(minn==x)
    		{ 
    			int min1=min(c-x,m-x);
    			int ans=minn+min(((c-x)+(m-x))/3,min1);
    			cout<<ans<<endl;
    		}
    		else
    		{
    			cout<<minn<<endl;
    		}
    	}
    	return 0;
    }

D. Make The Fence Great Again

题意:给n个木块的起始高度,还有每个木块加一高度的代价,求使每个木块相邻两边高度不同的最小代价。

思路:设f[i][j],表示判断到第i个木块,第i个木块增高j所需的最小代价,可知,每个木块因为相邻两个木块,所以每个木块只需要增高0,1,2这三种可能,做法就是相当于暴力枚举加记忆化了。

#include<bits/stdc++.h>
#define ll long long
#define N 0x3f3f3f3f3f3f3f // 需要开大点 
using namespace std;
ll a[300010],v[300010];
ll f[300010][3];
int main()
{
	int t;
	scanf("%d",&t);
	//cin>>t;
	while(t--)
	{
		int n;
		cin>>n;
		for(int i=1;i<=n;i++)
		{
			scanf("%lld%lld",&a[i],&v[i]);
		}
		for(int i=1;i<=n;i++)
		{
			for(int j=0;j<3;j++)
			{
				f[i][j]=N;
			}
		}
		f[1][0]=0;
		f[1][1]=1ll*v[1];
		f[1][2]=1ll*2*v[1];
		for(int i=2;i<=n;i++)
		{
			for(int j=0;j<3;j++)
			{
				for(int k=0;k<3;k++)
				{
					if(a[i-1]+j!=a[i]+k)
					{
						f[i][k]=min(f[i][k],f[i-1][j]+k*v[i]);
					}
				}
			}
		}
		printf("%lld\n",min(f[n][0],min(f[n][1],f[n][2])));
	}
	return 0;
}

E.Game With String

题意:
给出一个01序列,两个人来玩博弈游戏,博弈规则如下:

  • A为先手,B为后手,给出a,b,b<a,A能够将a个连续的a个0变为1;B能够将连续的b个0变为1。
  • 当有一个人无法操作时,则输掉这场游戏。

现给出长度不超过10^5的序列,问谁胜谁负。

思路:
感觉很有意思的一道博弈题,跟平时遇到的博弈题不一样。感觉不一样就在于游戏规则对于双方来说都不一样,好像是非平衡博弈?
首先有一个很重要的观察:

  • 如果存在一段连续的0的长度x满足:b≤x<a,那么B必胜。

证明 B会比A多一次机会。 A能搞的B也能搞;若出现一个局面,B必须用掉这一次机会,那么说明其它位置肯定不存在一段长度大于等于b了,自然之后A不能再搞了。那么现在考虑,在什么样的局面下,B能够构造出上述观察。思考可以发现,当存在两段连续0的个数都大于等于2b时,B必然可以构造出这样一段,当然原来就有这么一段就不说了。
发现剩下的情况个数很少,我们直接分类讨论:

  • 当不存在任何一个段长度大于等于2b时,显然此时所有合法段的长度都是不小于a的(前面的情况已经排除)。那么此时的胜负就根据合法段的奇偶个数。
  • 当仅存在一个时,既然只有一段,直接枚举A在该段上的所有选择,看看存不存在必胜状态就行啦。A开始必然在这段区间上面选,不然B可以随便构造出满足“观察”的段。 来自博主

 

#include<bits/stdc++.h>
using namespace std;
void A()
{
	cout<<"YES"<<endl;
}
void B()
{
	cout<<"NO"<<endl;
}
int main()
{
	int t;
	cin>>t;
	while(t--)
	{
		vector<int>v;
		int a,b;
		cin>>a>>b;
		string s;
		cin>>s;
		int cnt=0;
		for(int i=0;i<s.size();i++)
		{
			if(s[i]=='.')
			{
				cnt++;
			}
			else
			{
				if(cnt)
				{
					v.push_back(cnt);
					cnt=0;
				}
			}
		}
		if(cnt)
		{
			v.push_back(cnt);
			cnt=0;
		}
		int f=0;
		int len;
		for(int i=0;i<v.size();i++)
		{
			if(v[i]>=2*b)
			cnt++,len=v[i];
			if(v[i]>=b&&v[i]<a)
			{
				f=1;
			} 
		}
		if(f||cnt>=2)
		{
			B();
			continue;
		}
		if(cnt==0)
		{
			for(int i=0;i<v.size();i++)
			{
				if(v[i]>=a)++cnt;
			}
			if(cnt&1)
			A();
			else
			B();
			continue;
		}
		cnt=0;
		for(int i=0;i<v.size();i++)
		{
			if(v[i]>=a&&v[i]!=len)
			{
				cnt++;
			}
		}
		int flag=0;
		for(int l=1;l+a-1<=len;l++)
		{
			int r=l+a-1;
			int left=l-1,right=len-r;
			if(left>=2*b||right>=2*b)
			continue;
			if((left>=b&&left<a)||(right>=b&&right<a))
			{
				continue;
			}
			int temp=cnt+(left>=a)+(right>=a);
			if(temp%2==0)
			{
				flag=1;
				A();
				break;
			}
		}
		if(!flag)
		{
			B();
		}
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值