八后问题描述如下:
在一个8X8的国际象棋盘上,有八个皇后,每个皇后占一格,要求皇后之间不会出现相互“攻击“的现象,
即不能有两个皇后处在同一行,同一列或同意对角线上,问共有多少种不同的方法。
问题分析:
关于此问题的解决方法有多种,这里只介绍回溯法,其他方法大家可以自己去找找,我们采用一维数组处理,
数组的下标i表示棋盘上的第i列,a[i]的值表示皇后在第i列所放的行位置。如:a[2]=3,表示在棋盘的第2列的第3个位置放一个皇后。
程序中先令a[1]=1,然后试探第二列中皇后的位置,找到合适的位置后,在继续找第3列。。。。最终反复试探,可以找出全部的位置。
程序代码:
#include <stdio.h>
#include <math.h>
#define NUM 8
int a[NUM+1];
int main()
{
int number,i,k,flag,not_finish = 1,count = 0;
i = 1; //正在处理的元素下标,表示前i-1个元素已符合要求
a[1] = 1; //为数组的第一个元素赋值
printf("可能的配置如下:\n");
while(not_finish) //not_finish=1处理尚未结束
{
while(not_finish && i<=NUM) //处理尚未结束且还没处理到第NUM个元素
{
for(flag=1,k=1; flag && k<i; k++) //判断是否有多个皇后在同一行
{
if(a[k]==a[i])
flag = 0;
}
for(k=1; flag && k<i; k++) //判断是否有多个皇后在同一对角线
{
if(abs(a[i]-a[k]) == (i-k)) //(a[i]==a[k]-(k-i))||(a[i]==a[k]+(k-i))
flag = 0;
}
if(!flag) //若存在矛盾不满足要求,需要重新设置第i个元素
{
if(a[i]==a[i-1]) //若a[i]的值已经经过一圈追上a[i-1]的值
{
i--; //退回一步,重新试探处理前一个元素
if(i>1 && a[i]==NUM) //当a[i]的值为NUM时将a[i]的值置1
a[i] = 1;
else if(i==1 && a[i]==NUM) //当第一位的值达到NUM时结束
not_finish = 0;
else
a[i]++; //将a[i]的值取下一个值
}
else if(a[i]==NUM)
a[i] = 1;
else
a[i]++; //将a[i]的值取下一个值
}
else if(++i<=NUM) //第i位已经满足要求则处理i+1位
{
if(a[i-1]==NUM) //若前一个元素的值为NUM则a[i]=1
a[i] = 1;
else //否则元素值为前一个元素的下一个值
a[i] = a[i-1]+1;
}
}
if(not_finish)
{
++count;
printf((count-1)%3 ? " [%2d]:" : "\n [%2d]:",count);
for(k=1; k<=NUM; k++) //输出结果
{
printf(" %d",a[k]);
}
if(a[NUM-1]<NUM) //修改倒数第二位的值
a[NUM-1]++;
else
a[NUM-1]=1;
i = NUM-1; //开始寻找下一个满足条件的解
}
}
printf("\n");
return 0;
}
运行结果如下:
后续说明:
如果不考虑棋盘的对称性,则有92种解法。