小白量化《穿云箭集群量化》(4)指标公式写策略

小白量化《穿云箭集群量化》(4)指标公式写策略
穿云箭量化平台支持中文Python写量化策略,同时也直接支持股票公式指标写策略。下面我们看看是如何实现的。
股票软件的指标公式语法是一样的,不同仅仅是个别函数或绘图函数或绘图命令不相同。
下面我们看看常见的MACD指标公式的源码是怎么描述的。
在这里插入图片描述
如果不用公式语法描述指标,在python中需要这样实现macd指标。
在这里插入图片描述
我们因此建议大家学习指标公式编写策略,是学习量化实现自动交易的捷径。
初中文化程度用心学习,学会公式编写要1周,学会python语法要1个月(只需要看懂,能复制粘贴修改,不需要自己从头写代码)。很快就能实现全自动交易。
走其他路线学量化,大学文化,全职学会Python要一学期,学会数据结构和算法要一学期,还要学习其他数据库等等,什么时候才能真正实现自己的量化交易?
下面我们看有初中文化程度的小白是如何实现自己的量化交易的。
一、在大智慧、通达信、同花顺、东方财富等软件,编写自编“屠龙剑”指标。(“屠龙剑”指标是演示,不保证能赚钱。)
在这里插入图片描述

{屠龙剑}
N:=9;
M1:=3;
M2:=3;
RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100;
K:=SMA(RSV,M1,1);
D:=SMA(K,M2,1);
J:=3*K-2*D;
B:CROSS(K,D);
S:CROSS(D,K);

二、在股票软件中测试优化完成,把源代码复制到穿云箭量化的公式面板中。
1、选择一个优质股票池,未来会有70%的股票会上涨。
2、在穿云箭量化的公式面板中,回测和优化。
在这里插入图片描述

3、回测完成,当自己满意时,可以通过【生成回测策略】【生成交易策略】按钮,生成Python策略代码。
在这里插入图片描述
三、在穿云箭量化的回测面板中可以进行回测和优化。
下面是生成中文指标公式策略。

策略名='回测_自编公式'
导入 pandas 命名为 pd
导入 time
导入 HP_tdx 命名为 htdx   #小白量化行情模块
导入 HP_global 命名为 hg   #建立高级全局数据域hg
从 HP_formula 导入 *  #小白量化公式模块
从 HP_factor 导入 *  #小白量化因子公式及Alpha公式模块
导入 HP_factor 命名为 hf #小白量化因子公式及Alpha公式模块
导入 HP_formula 命名为 gs  #小白量化公式模块
导入 HP_quant 命名为 hpq   #穿云箭量化模块
从 HP_quant 导入 *  #穿云箭量化模块
导入 HP_tdxgs 命名为 tgs  #公式运行模块
mygs=tgs.Tdxgs()

函数 初始化(context):
    context.zh='xiaoba'      #账户
    context.zhlx='回测'   #账户类型,2个汉字
    context.firstcash=1000000.00  #初始现金
    context.cash=context.firstcash
    context.portfolio.available_cash=context.firstcash
    set_maxdays(500)
    # 设置我们要操作的股票池
    g.stocks=hpq.get_universe()
    hpq.log.info('----策略环境信息-----')
    输出('量化模块版本: ',hpq.ver)
    输出('量化模块最后修改日期: ',hpq.mdate)
    输出('svrip: ',hpq.svrip)
    输出('svrport: ',hpq.svrport)
    输出('\n----开始运行策略-----\n')
    输出('策略名:'+策略名)
    qhcsj2=time.strftime('%Y%m%d %H:%M:%S',time.localtime(time.time()))
    输出('开始运行时间:'+qhcsj2)
    # 设定沪深300作为基准
    set_benchmark((1,'000001'))
    # 开启动态复权模式(真实价格)
    set_option('use_real_price',)
    hg.seemsg=假
    hg.hqsl=1 #行情数量
    #hg.sdhq=1 #闪电行情
    g.MAX=50
    g.hd=0.003 #滑点
    g.zzs=-0.05  #止损
    g.amount=500 #买入数量
    g.gs='''{自编指标公式,最好用专家系统公式}
{屠龙剑}
N:=9;
M1:=3;
M2:=3;
RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100;
K:=SMA(RSV,M1,1);
D:=SMA(K,M2,1);
J:=3*K-2*D;
B:CROSS(K,D);
S:CROSS(D,K);
'''
##Python程序员交流QQ群 17126454
# 每个单位时间(如果按天回测,则每天调用一次,如果按分钟,则每分钟调用一次)调用一次
函数 盘中运行(context, data):
    序列循环 m,security 在其中 context.universe[0]:
        如果 security 不是 在其中 data:
            继续
        df=data[security].df
        如果 len(df)<1:
            继续
        price = data[security].close
        close=price
        high= data[security].high
        low= data[security].low
        pre_close=data[security].pre_close   #前收盘
        #value = context.portfolio.positions[security].value
        acc_avg_cost  = context.portfolio.positions[security].acc_avg_cost #买入成本价 
        amos=context.portfolio.positions[security].closeable_amount  #可卖数量
        amos2=context.portfolio.positions[security].total_amount   #总数量

        mydf=gs.initmydf(df)  ##初始化mydf表
        mygs.loaddf(mydf)  #加载行情数据
        mydf=mygs.execgs(g.gs)  #运行指标公式

        如果 'ENTERLONG' 在其中 mydf.columns:
            BUY=mydf['ENTERLONG']  #买点
        否则如果 'BUY' 在其中 mydf.columns:
            BUY=mydf['BUY']  #买点
        否则如果 'B' 在其中 mydf.columns:
            BUY=mydf['B']  #买点

        如果 'EXITLONG' 在其中 mydf.columns:
            SELL=mydf['EXITLONG']  #卖点
        否则如果 'SELL' 在其中 mydf.columns:
            SELL=mydf['SELL']  #卖点
        否则如果 'S' 在其中 mydf.columns:
            SELL=mydf['S']  #卖点

        如果 BUY.iloc[-1]>0 并且 (amos2==0 或者 amos==0):
            price2=round(price*(1+g.hd),2)
            x=order_target(security,g.amount,p=price2)
            如果 x !=:
                hpq.log.info(context.current_dt+" 买入: %s ,数量:%d,买入价格:%.2f,成交资金:%0.2f"%(security,x.amount,price,x.amount*price))

        amos=context.portfolio.positions[security].closeable_amount  #可卖数量
        如果 SELL.iloc[-1]>0 并且 amos>0:
            price2=round(price*(1-g.hd),2)
            x=order_target(security,0,p=price2)
            hpq.log.info(context.current_dt+  " 卖出: %s ,数量:%d,卖出价格:%.2f,成交资金:%0.2f"%(security,amos,price2,amos*price2))

在这里插入图片描述

四、在穿云箭量化的交易面板中可以进行模拟或实盘交易。
在这里插入图片描述
中文Python穿云箭量化平台支持中文Python语法,提供了完整的Python股票软件开发源代码。新版本支持自编指标公式脚本编写策略回测,并有一键生成Python交易策略功能,提供多空雷达,抄底雷达,响尾蛇导弹,巡航到导弹等交易技术。提供期货行情,期货CTP接口,提供MT5交易接口,提供miniQMT接口,以及彩票模块。支持问财选股,支持语音报盘,微信通知等。
用户可以根据自己需求设计出满足自己要求的 自动化交易工具。

超越自己是我的每一步!我的进步就是你的进步!

小白量化学习-自创指标设计 一、准备工作 1、首先把“HP_formula.py”文件复制到自己的工程目录中。 2、在新文件开始增加下面4条语句。 import numpy as np import pandas as pd from HP_formula import * import tushare as ts 二、对数据预处理 我们采用与tushare旧股票数据格式。 #首先要对数据预处理 df = ts.get_k_data('600080',ktype='D') mydf=df.copy() CLOSE=mydf['close'] LOW=mydf['low'] HIGH=mydf['high'] OPEN=mydf['open'] VOL=mydf['volume'] C=mydf['close'] L=mydf['low'] H=mydf['high'] O=mydf['open'] V=mydf['volume'] 三、仿通达信或大智慧公式 通达信公式转为python公式的过程。 1.‘:=’为赋值语句,用程序替换‘:=’为python的赋值命令‘='。 2.‘:’为公式的赋值带输出画线命令,再替换‘:’为‘=’,‘:’前为输出变量,顺序到return 返回参数中。 3.全部命令转为英文大4.删除绘图格式命令。 5.删除掉每行未分号; 。 6.参数可到函数参数表中.例如: def KDJ(N=9, M1=3, M2=3): 例如通达信 KDJ指标公式描述如下。 参数表 N:=9, M1:=3, M2:=3 RSV:=(CLOSE-LLV(LOW,N))/(HHV(HIGH,N)-LLV(LOW,N))*100; K:SMA(RSV,M1,1); D:SMA(K,M2,1); J:3*K-2*D; # Python的KDJ公式 def KDJ(N=9, M1=3, M2=3): RSV = (CLOSE - LLV(LOW, N)) / (HHV(HIGH, N) - LLV(LOW, N)) * 100 K = SMA(RSV,M1,1) D = SMA(K,M2,1) J = 3*K-2*D return K, D, J #----------------------------------- #根据上面原理,我们把大智慧RSI指标改 # 为Python代码,如下。 def RSI(N1=6, N2=12, N3=24): """ RSI 相对强弱指标 """ LC = REF(CLOSE, 1) RSI1 = SMA(MAX(CLOSE - LC, 0), N1, 1) / SMA(ABS(CLOSE - LC), N1, 1) * 100 RSI2 = SMA(MAX(CLOSE - LC, 0), N2, 1) / SMA(ABS(CLOSE - LC), N2, 1) * 100 RSI3 = SMA(MAX(CLOSE - LC, 0), N3, 1) / SMA(ABS(CLOSE - LC), N3, 1) * 100 return RSI1, RSI2, RSI3 四、使用公式并绘图 #假定我们使用RSI指标 r1,r2,r3=RSI() mydf = mydf.join(pd.Series( r1,name='RSI1')) mydf = mydf.join(pd.Series( r2,name='RSI2')) mydf = mydf.join(pd.Series( r3,name='RSI3')) mydf['S80']=80 #增加上轨80轨迹线 mydf['X20']=20 #增加下轨20轨迹线 mydf=mydf.tail(100) #显示最后100条数据线 #下面是绘线语句 mydf.S80.plot.line() mydf.X20.plot.line() mydf.RSI1.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) mydf.RSI2.plot.line(legend=True) 不懂就看我的博客 https://blog.csdn.net/hepu8/article/details/93378543
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荷蒲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值