一、题目描述
在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas 和 cost ,如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
二、解题
一次遍历
这题比较巧妙,使用一次遍历即可。
- 首先判断总的耗油量和总的加油量的大小关系,如果总的加油量小于总的耗油量,说明跑步完全程。所以总的加油量必须大于总的耗油量。
- 其次找每个加油站的加油量和耗油量的最低点,无论正负。
- 找到最低点后,如果有解,那么解就是最低点的下一个点,因为总(gas-cost)是大于等于0的,所以前面损失的gas我从最低点下一个点开始都会补充。
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
//一次遍历
int length = gas.length;
//判断加油量和耗油量的大小,如果加油量不够耗油量 就不能走完全程
int sum = 0;
int mincurSum = Integer.MAX_VALUE;
int minindex = 0;
for(int i = 0;i<length;i++){
sum += gas[i] - cost[i];
if(sum < mincurSum){
mincurSum = sum;
minindex = i;
}
}
return sum < 0 ? -1 : (minindex + 1) % length;
}
}
时间复杂度:O(n);
空间复杂度:O(1)。