排序算法(三)堆排序原理与实现(小顶堆)

6 篇文章 2 订阅

堆排序实际上是利用堆的性质来进行排序的,要知道堆排序的原理我们首先一定要知道什么是堆。
堆的定义:
堆实际上是一棵完全二叉树。
堆满足两个性质:
1、堆的每一个父节点都大于(或小于)其子节点;
2、堆的每个左子树和右子树也是一个堆。
堆的分类:
堆分为两类:
1、最大堆(大顶堆):堆的每个父节点都大于其孩子节点;
2、最小堆(小顶堆):堆的每个父节点都小于其孩子节点;
这里写图片描述
堆的存储:
一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如下图所示:
这里写图片描述
堆排序:
由上面的介绍我们可以看出堆的第一个元素要么是最大值(大顶堆),要么是最小值(小顶堆),这样在排序的时候(假设共n个节点),直接将第一个元素和最后一个元素进行交换,然后从第一个元素开始进行向下调整至第n-1个元素。所以,如果需要升序,就建一个大堆,需要降序,就建一个小堆。
堆排序的步骤分为三步:
1、建堆(升序建大堆,降序建小堆);
2、交换数据;
3、向下调整。
假设我们现在要对数组arr[]={8,5,0,3,7,1,2}进行排序(降序):
首先要先建小堆:
这里写图片描述
堆建好了下来就要开始排序了:
这里写图片描述
现在这个数组就已经是有序的了。
下面给出代码:

void AdjustDown(int arr[], int i, int n)
{
    int j = i * 2 + 1;//子节点 
    while (j<n)
    {
        if (j+1<n && arr[j] > arr[j + 1])//子节点中找较小的
        {
            j++;
        }
        if (arr[i] < arr[j])
        {
            break;
        }
        swap(arr[i],arr[j]);
        i = j;
        j = i * 2 + 1;
    }
}
void MakeHeap(int arr[], int n)//建堆
{
    int i = 0;
    for (i = n / 2 - 1; i >= 0; i--)//((n-1)*2)+1 =n/2-1
    {
        AdjustDown(arr, i, n);
    }
}
void HeapSort(int arr[],int len)
{
    int i = 0;
    MakeHeap(arr, len);
    for (i = len - 1; i >= 0; i--)
    {
        swap(arr[i], arr[0]);
        AdjustDown(arr, 0, i);
    }

}
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值