图像特征提取与区域描述:从基础到统一的方法
在图像分析和处理领域,准确描述图像中的区域和形状是一项关键任务。这不仅有助于识别和区分不同的对象,还能为后续的分析和决策提供重要依据。本文将深入探讨多种用于描述图像区域的方法,包括基本区域描述符和矩描述符,以及它们的特性、应用和相互关系。
1. 傅里叶描述符及其局限性
傅里叶描述符在形状分析中具有重要地位。3D 傅里叶描述符早在 1992 年就被引入用于简单形状的分析,并且在后续的应用中表现出良好的性能。它也被应用于计算机图形学中的形状建模。然而,傅里叶描述符存在一定的局限性,它无法用于处理被遮挡或混合的形状,通常需要依赖对遮挡不敏感的提取技术,如霍夫变换(HT)。不过,也有一些方法尝试使用傅里叶描述符对部分形状进行分类。
2. 区域描述符
区域描述符主要分为两类:基本区域描述符和矩描述符。前者侧重于描述区域的几何属性,而后者则关注区域的密度分布。
2.1 基本区域描述符
基本区域描述符通过考虑基于区域几何属性的标量度量来描述区域。以下是一些常见的基本区域描述符:
- 面积 :区域在平面上的面积定义为:
[A(S) = \iint_{S} I(x,y) \,dy \,dx]
其中,当像素 ((x,y)) 在形状内时,(I(x,y) = 1),否则为 0。在实际应用中,积分通常用求和来近似:
[A(S) = \sum_{x} \sum_{y} I(x,y) \Delta A]
这里,(\Delta A) 是一个像素的面积。面积会随图像尺度的变化而改变,但对图像旋转具有不变性。不过,在进
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



