21、图像特征提取与区域描述:从基础到统一的方法

图像特征提取与区域描述:从基础到统一的方法

在图像分析和处理领域,准确描述图像中的区域和形状是一项关键任务。这不仅有助于识别和区分不同的对象,还能为后续的分析和决策提供重要依据。本文将深入探讨多种用于描述图像区域的方法,包括基本区域描述符和矩描述符,以及它们的特性、应用和相互关系。

1. 傅里叶描述符及其局限性

傅里叶描述符在形状分析中具有重要地位。3D 傅里叶描述符早在 1992 年就被引入用于简单形状的分析,并且在后续的应用中表现出良好的性能。它也被应用于计算机图形学中的形状建模。然而,傅里叶描述符存在一定的局限性,它无法用于处理被遮挡或混合的形状,通常需要依赖对遮挡不敏感的提取技术,如霍夫变换(HT)。不过,也有一些方法尝试使用傅里叶描述符对部分形状进行分类。

2. 区域描述符

区域描述符主要分为两类:基本区域描述符和矩描述符。前者侧重于描述区域的几何属性,而后者则关注区域的密度分布。

2.1 基本区域描述符

基本区域描述符通过考虑基于区域几何属性的标量度量来描述区域。以下是一些常见的基本区域描述符:
- 面积 :区域在平面上的面积定义为:
[A(S) = \iint_{S} I(x,y) \,dy \,dx]
其中,当像素 ((x,y)) 在形状内时,(I(x,y) = 1),否则为 0。在实际应用中,积分通常用求和来近似:
[A(S) = \sum_{x} \sum_{y} I(x,y) \Delta A]
这里,(\Delta A) 是一个像素的面积。面积会随图像尺度的变化而改变,但对图像旋转具有不变性。不过,在进

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值